Properties

Label 16.0.12859002663...0625.1
Degree $16$
Signature $[0, 8]$
Discriminant $5^{12}\cdot 29^{6}\cdot 941^{2}$
Root discriminant $27.82$
Ramified primes $5, 29, 941$
Class number $2$
Class group $[2]$
Galois group 16T1445

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![31, -50, -135, 106, 237, 20, 41, 34, -36, 76, -79, 2, 59, -57, 29, -8, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 8*x^15 + 29*x^14 - 57*x^13 + 59*x^12 + 2*x^11 - 79*x^10 + 76*x^9 - 36*x^8 + 34*x^7 + 41*x^6 + 20*x^5 + 237*x^4 + 106*x^3 - 135*x^2 - 50*x + 31)
 
gp: K = bnfinit(x^16 - 8*x^15 + 29*x^14 - 57*x^13 + 59*x^12 + 2*x^11 - 79*x^10 + 76*x^9 - 36*x^8 + 34*x^7 + 41*x^6 + 20*x^5 + 237*x^4 + 106*x^3 - 135*x^2 - 50*x + 31, 1)
 

Normalized defining polynomial

\( x^{16} - 8 x^{15} + 29 x^{14} - 57 x^{13} + 59 x^{12} + 2 x^{11} - 79 x^{10} + 76 x^{9} - 36 x^{8} + 34 x^{7} + 41 x^{6} + 20 x^{5} + 237 x^{4} + 106 x^{3} - 135 x^{2} - 50 x + 31 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(128590026636328369140625=5^{12}\cdot 29^{6}\cdot 941^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $27.82$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 29, 941$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} - \frac{2}{5} a^{11} + \frac{1}{5} a^{10} + \frac{2}{5} a^{9} + \frac{2}{5} a^{8} + \frac{1}{5} a^{5} - \frac{2}{5} a^{4} + \frac{1}{5} a^{3} + \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{13} + \frac{2}{5} a^{11} - \frac{1}{5} a^{10} + \frac{1}{5} a^{9} - \frac{1}{5} a^{8} + \frac{1}{5} a^{6} + \frac{2}{5} a^{4} + \frac{2}{5} a^{3} + \frac{1}{5} a^{2} - \frac{2}{5} a + \frac{2}{5}$, $\frac{1}{185} a^{14} - \frac{1}{185} a^{13} + \frac{1}{37} a^{12} - \frac{79}{185} a^{11} + \frac{10}{37} a^{10} - \frac{81}{185} a^{9} - \frac{53}{185} a^{8} + \frac{46}{185} a^{7} - \frac{71}{185} a^{6} + \frac{10}{37} a^{5} + \frac{44}{185} a^{4} - \frac{78}{185} a^{3} - \frac{58}{185} a^{2} + \frac{27}{185} a + \frac{41}{185}$, $\frac{1}{56598638456435} a^{15} + \frac{3419362935}{11319727691287} a^{14} - \frac{557222930962}{56598638456435} a^{13} + \frac{2498499087597}{56598638456435} a^{12} - \frac{25753080875238}{56598638456435} a^{11} - \frac{5852006658069}{56598638456435} a^{10} - \frac{1411878224473}{56598638456435} a^{9} + \frac{16707184579736}{56598638456435} a^{8} - \frac{21255018547}{305938586251} a^{7} - \frac{5296955857132}{56598638456435} a^{6} + \frac{3456937541545}{11319727691287} a^{5} + \frac{10565954645977}{56598638456435} a^{4} + \frac{8450032925033}{56598638456435} a^{3} + \frac{20315896553063}{56598638456435} a^{2} + \frac{9674279492576}{56598638456435} a + \frac{2622074455714}{11319727691287}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 33739.9096907 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1445:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 2048
The 74 conjugacy class representatives for t16n1445 are not computed
Character table for t16n1445 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 4.4.725.1, 8.0.494613125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ R ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$5$5.8.6.1$x^{8} - 5 x^{4} + 400$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
5.8.6.1$x^{8} - 5 x^{4} + 400$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
$29$29.2.1.2$x^{2} + 58$$2$$1$$1$$C_2$$[\ ]_{2}$
29.2.1.2$x^{2} + 58$$2$$1$$1$$C_2$$[\ ]_{2}$
29.4.0.1$x^{4} - x + 19$$1$$4$$0$$C_4$$[\ ]^{4}$
29.4.2.1$x^{4} + 145 x^{2} + 7569$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
29.4.2.2$x^{4} - 29 x^{2} + 2523$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
941Data not computed