Normalized defining polynomial
\( x^{16} - 4 x^{14} + 16 x^{12} - 100 x^{10} + 385 x^{8} - 864 x^{6} + 1170 x^{4} - 864 x^{2} + 324 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(128353931059122929664=2^{38}\cdot 3^{4}\cdot 7^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $18.06$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5}$, $\frac{1}{6} a^{10} - \frac{1}{6} a^{8} + \frac{1}{6} a^{6} - \frac{1}{6} a^{4} - \frac{1}{3} a^{2}$, $\frac{1}{12} a^{11} - \frac{1}{12} a^{10} - \frac{1}{12} a^{9} + \frac{1}{12} a^{8} - \frac{1}{6} a^{7} + \frac{1}{6} a^{6} + \frac{1}{6} a^{5} - \frac{1}{6} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2}$, $\frac{1}{792} a^{12} + \frac{13}{396} a^{10} - \frac{149}{792} a^{8} + \frac{41}{198} a^{6} - \frac{7}{396} a^{4} - \frac{10}{33} a^{2} - \frac{9}{22}$, $\frac{1}{792} a^{13} + \frac{13}{396} a^{11} - \frac{149}{792} a^{9} + \frac{41}{198} a^{7} - \frac{7}{396} a^{5} - \frac{10}{33} a^{3} - \frac{9}{22} a$, $\frac{1}{109296} a^{14} + \frac{1}{9936} a^{12} - \frac{661}{9936} a^{10} + \frac{24971}{109296} a^{8} + \frac{4901}{54648} a^{6} + \frac{2833}{18216} a^{4} - \frac{613}{3036} a^{2} + \frac{331}{1012}$, $\frac{1}{218592} a^{15} - \frac{1}{218592} a^{14} - \frac{127}{218592} a^{13} + \frac{127}{218592} a^{12} + \frac{7357}{218592} a^{11} - \frac{7357}{218592} a^{10} - \frac{27331}{218592} a^{9} + \frac{27331}{218592} a^{8} + \frac{2693}{109296} a^{7} - \frac{2693}{109296} a^{6} - \frac{8989}{36432} a^{5} + \frac{8989}{36432} a^{4} - \frac{235}{2024} a^{3} + \frac{235}{2024} a^{2} + \frac{745}{2024} a - \frac{745}{2024}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3195.01813455 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4.C_2^3$ (as 16T329):
| A solvable group of order 128 |
| The 29 conjugacy class representatives for $C_2^4.C_2^3$ |
| Character table for $C_2^4.C_2^3$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-14}) \), \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{2}, \sqrt{-7})\), 4.0.392.1 x2, 4.2.448.1 x2, 8.0.9834496.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.22.12 | $x^{8} + 10 x^{4} + 4$ | $4$ | $2$ | $22$ | $Q_8:C_2$ | $[2, 3, 4]^{2}$ |
| 2.8.16.13 | $x^{8} + 6 x^{6} + 4 x^{5} + 2 x^{4} + 4$ | $4$ | $2$ | $16$ | $D_4\times C_2$ | $[2, 2, 3]^{2}$ | |
| $3$ | 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $7$ | 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |