Normalized defining polynomial
\( x^{16} - 8 x^{15} + 62 x^{14} - 294 x^{13} + 1232 x^{12} - 3774 x^{11} + 10008 x^{10} - 19892 x^{9} + 34425 x^{8} - 44976 x^{7} + 56189 x^{6} - 53874 x^{5} + 61418 x^{4} - 48694 x^{3} + 51225 x^{2} - 22708 x + 13921 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(12796960816656000000000000=2^{16}\cdot 3^{8}\cdot 5^{12}\cdot 61^{2}\cdot 181^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $37.08$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 61, 181$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{15} a^{12} - \frac{2}{5} a^{11} - \frac{4}{15} a^{10} - \frac{1}{3} a^{9} - \frac{1}{15} a^{8} - \frac{2}{15} a^{7} + \frac{7}{15} a^{6} + \frac{7}{15} a^{5} + \frac{1}{15} a^{4} + \frac{2}{5} a^{3} + \frac{2}{5} a^{2} - \frac{1}{3} a - \frac{4}{15}$, $\frac{1}{15} a^{13} + \frac{1}{3} a^{11} + \frac{1}{15} a^{10} - \frac{1}{15} a^{9} + \frac{7}{15} a^{8} - \frac{1}{3} a^{7} + \frac{4}{15} a^{6} - \frac{2}{15} a^{5} - \frac{1}{5} a^{4} - \frac{1}{5} a^{3} + \frac{1}{15} a^{2} - \frac{4}{15} a + \frac{2}{5}$, $\frac{1}{158415} a^{14} - \frac{350}{10561} a^{13} - \frac{703}{31683} a^{12} - \frac{62714}{158415} a^{11} + \frac{17933}{52805} a^{10} - \frac{10771}{52805} a^{9} - \frac{8525}{31683} a^{8} - \frac{10012}{52805} a^{7} + \frac{10281}{52805} a^{6} - \frac{16198}{158415} a^{5} - \frac{50953}{158415} a^{4} - \frac{59039}{158415} a^{3} + \frac{20066}{158415} a^{2} + \frac{829}{2685} a + \frac{10001}{31683}$, $\frac{1}{62498669330575861435215435} a^{15} - \frac{155504356666788945646}{62498669330575861435215435} a^{14} + \frac{223467487279935177606098}{20832889776858620478405145} a^{13} + \frac{1408212459369611985801682}{62498669330575861435215435} a^{12} + \frac{746666868370512856265899}{20832889776858620478405145} a^{11} - \frac{13056437028855425247609617}{62498669330575861435215435} a^{10} + \frac{21470180677391843334052789}{62498669330575861435215435} a^{9} + \frac{10265640602686903018483241}{62498669330575861435215435} a^{8} - \frac{2057321995000524462279516}{20832889776858620478405145} a^{7} + \frac{7437208061148488762349467}{62498669330575861435215435} a^{6} - \frac{8943888909651822445809772}{20832889776858620478405145} a^{5} - \frac{2844237507749956534389169}{20832889776858620478405145} a^{4} + \frac{15629255325765874392946729}{62498669330575861435215435} a^{3} + \frac{3659239282905223802911300}{12499733866115172287043087} a^{2} + \frac{23229662022202388901958288}{62498669330575861435215435} a + \frac{975890762181140345073098}{12499733866115172287043087}$
Class group and class number
$C_{2}\times C_{2}\times C_{40}$, which has order $160$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3121.7160225 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 62 conjugacy class representatives for t16n797 are not computed |
| Character table for t16n797 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{15}) \), \(\Q(\zeta_{20})^+\), \(\Q(\zeta_{15})^+\), \(\Q(\sqrt{3}, \sqrt{5})\), \(\Q(\zeta_{60})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 61 | Data not computed | ||||||
| 181 | Data not computed | ||||||