Normalized defining polynomial
\( x^{16} - 4 x^{15} + 8 x^{14} - 16 x^{13} + 73 x^{12} - 240 x^{11} + 504 x^{10} - 812 x^{9} + 1456 x^{8} - 2988 x^{7} + 5304 x^{6} - 6960 x^{5} + 6313 x^{4} - 3584 x^{3} + 968 x^{2} + 44 x + 1 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(12750963979803688960000=2^{32}\cdot 5^{4}\cdot 41^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $24.08$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{8} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a + \frac{1}{8}$, $\frac{1}{56} a^{13} + \frac{3}{56} a^{12} + \frac{3}{14} a^{11} + \frac{2}{7} a^{10} - \frac{1}{7} a^{9} - \frac{5}{14} a^{8} - \frac{5}{14} a^{7} + \frac{3}{14} a^{6} - \frac{1}{14} a^{5} - \frac{1}{7} a^{4} - \frac{2}{7} a^{3} + \frac{3}{14} a^{2} + \frac{13}{56} a + \frac{15}{56}$, $\frac{1}{8176} a^{14} - \frac{27}{4088} a^{13} - \frac{75}{8176} a^{12} - \frac{405}{2044} a^{11} + \frac{473}{1022} a^{10} + \frac{669}{2044} a^{9} + \frac{15}{146} a^{8} + \frac{179}{1022} a^{7} + \frac{215}{1022} a^{6} - \frac{211}{2044} a^{5} - \frac{85}{1022} a^{4} + \frac{69}{292} a^{3} - \frac{2407}{8176} a^{2} + \frac{925}{4088} a - \frac{2563}{8176}$, $\frac{1}{4537978661104} a^{15} + \frac{89237717}{2268989330552} a^{14} + \frac{14226303747}{4537978661104} a^{13} + \frac{10869065787}{283623666319} a^{12} - \frac{6967767317}{81035333234} a^{11} + \frac{30153099685}{1134494665276} a^{10} + \frac{83918099557}{567247332638} a^{9} - \frac{138662270322}{283623666319} a^{8} - \frac{2887029281}{7770511406} a^{7} + \frac{45000792587}{1134494665276} a^{6} + \frac{181522058685}{567247332638} a^{5} + \frac{333157987055}{1134494665276} a^{4} + \frac{1108765999001}{4537978661104} a^{3} + \frac{1004907115873}{2268989330552} a^{2} + \frac{1108076732459}{4537978661104} a + \frac{490087692599}{1134494665276}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{1659869609}{81035333234} a^{15} - \frac{205229715603}{2268989330552} a^{14} + \frac{108300599423}{567247332638} a^{13} - \frac{843781176391}{2268989330552} a^{12} + \frac{902886095031}{567247332638} a^{11} - \frac{1545799694682}{283623666319} a^{10} + \frac{6763467768563}{567247332638} a^{9} - \frac{790678904575}{40517666617} a^{8} + \frac{9679095349387}{283623666319} a^{7} - \frac{19765303355540}{283623666319} a^{6} + \frac{71946058257405}{567247332638} a^{5} - \frac{48710173084192}{283623666319} a^{4} + \frac{6570804514301}{40517666617} a^{3} - \frac{220550413452155}{2268989330552} a^{2} + \frac{16617056896575}{567247332638} a - \frac{2879364543}{31082045624} \) (order $8$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 77896.9161128 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times D_4:D_4$ (as 16T265):
| A solvable group of order 128 |
| The 32 conjugacy class representatives for $C_2\times D_4:D_4$ |
| Character table for $C_2\times D_4:D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-2}) \), 4.4.2624.1, 4.0.10496.2, \(\Q(\zeta_{8})\), 8.4.112920166400.3, 8.4.7057510400.1, 8.0.110166016.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.16.6 | $x^{8} + 4 x^{6} + 8 x^{2} + 4$ | $4$ | $2$ | $16$ | $C_2^3$ | $[2, 3]^{2}$ |
| 2.8.16.6 | $x^{8} + 4 x^{6} + 8 x^{2} + 4$ | $4$ | $2$ | $16$ | $C_2^3$ | $[2, 3]^{2}$ | |
| $5$ | 5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 5.4.0.1 | $x^{4} + x^{2} - 2 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 5.4.0.1 | $x^{4} + x^{2} - 2 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $41$ | 41.4.0.1 | $x^{4} - x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 41.4.3.3 | $x^{4} + 246$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 41.4.3.3 | $x^{4} + 246$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 41.4.0.1 | $x^{4} - x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |