Normalized defining polynomial
\( x^{16} + 506 x^{14} + 153141 x^{12} + 40817027 x^{10} + 13041310242 x^{8} + 2486417463503 x^{6} + 576348918922940 x^{4} + 51604660127115744 x^{2} + 8441290099132106896 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(127002546850722315433493970504954877491242379898127259138662656=2^{8}\cdot 7^{8}\cdot 101^{6}\cdot 6578749^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $7611.82$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 101, 6578749$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{6} a^{8} + \frac{1}{6} a^{6} - \frac{1}{2} a^{5} - \frac{1}{3} a^{4} - \frac{1}{2} a^{3} - \frac{1}{3}$, $\frac{1}{6} a^{9} + \frac{1}{6} a^{7} + \frac{1}{6} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{3} a$, $\frac{1}{12} a^{10} - \frac{1}{12} a^{9} + \frac{1}{6} a^{7} + \frac{1}{6} a^{5} + \frac{5}{12} a^{4} - \frac{1}{4} a^{3} - \frac{1}{6} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{24} a^{11} + \frac{1}{24} a^{9} - \frac{1}{12} a^{8} + \frac{1}{6} a^{7} + \frac{1}{6} a^{6} + \frac{1}{8} a^{5} + \frac{1}{6} a^{4} + \frac{7}{24} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a + \frac{1}{6}$, $\frac{1}{24} a^{12} - \frac{1}{24} a^{10} - \frac{1}{24} a^{6} - \frac{1}{2} a^{5} + \frac{5}{24} a^{4} - \frac{1}{2} a^{3} - \frac{1}{3} a^{2} - \frac{1}{2} a - \frac{1}{3}$, $\frac{1}{24} a^{13} + \frac{1}{24} a^{9} - \frac{1}{12} a^{8} + \frac{1}{8} a^{7} + \frac{1}{6} a^{6} - \frac{1}{6} a^{5} - \frac{1}{3} a^{4} + \frac{11}{24} a^{3} - \frac{1}{4} a^{2} + \frac{1}{6} a + \frac{1}{6}$, $\frac{1}{46925128144882159821807686350199161186995623013988584} a^{14} + \frac{589753045956024637728873470110396747026658897872829}{46925128144882159821807686350199161186995623013988584} a^{12} - \frac{280188720782003498340603261931785557528203593563761}{11731282036220539955451921587549790296748905753497146} a^{10} - \frac{1}{12} a^{9} - \frac{2002483080397960501971338249494449327041416196657029}{46925128144882159821807686350199161186995623013988584} a^{8} + \frac{1}{6} a^{7} - \frac{2157791770731367692097839431666787111022097862630607}{15641709381627386607269228783399720395665207671329528} a^{6} - \frac{1}{3} a^{5} - \frac{1741974473377188500364534761982457205046625208715983}{11731282036220539955451921587549790296748905753497146} a^{4} - \frac{1}{4} a^{3} - \frac{2553093552567285011280752114317901847937914339629422}{5865641018110269977725960793774895148374452876748573} a^{2} - \frac{1}{3} a + \frac{27999612859755312926495787604137881569870957354834}{58075653644656138393326344492820744043311414621273}$, $\frac{1}{674929655272961200811918926081903858853578111293713454324912} a^{15} - \frac{1946060893340378824745414584178566948834671273475861511759}{112488275878826866801986487680317309808929685215618909054152} a^{13} - \frac{5810491426799207643986048764151273386366616925464798255507}{674929655272961200811918926081903858853578111293713454324912} a^{11} + \frac{45402640359738377748428633995228699907834222983883527735091}{674929655272961200811918926081903858853578111293713454324912} a^{9} - \frac{1}{12} a^{8} - \frac{36336377477386685032190361685029172754595729577405428698665}{337464827636480600405959463040951929426789055646856727162456} a^{7} + \frac{1}{6} a^{6} - \frac{305210102837584441356906780089260774503052590799177161745217}{674929655272961200811918926081903858853578111293713454324912} a^{5} - \frac{1}{3} a^{4} - \frac{62303852707222332202348942425607016944557059050115851156007}{168732413818240300202979731520475964713394527823428363581228} a^{3} + \frac{1}{4} a^{2} - \frac{370822177116241224670562464211187881315972641252242704209}{835308979298219307935543225348890914422745187244694869214} a - \frac{1}{3}$
Class group and class number
$C_{2}\times C_{2}\times C_{1411001944}$, which has order $5644007776$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6036196395940000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 6144 |
| The 60 conjugacy class representatives for t16n1683 are not computed |
| Character table for t16n1683 is not computed |
Intermediate fields
| 4.4.19796.1, 8.0.111579610566796865849226898384.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $7$ | 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| $101$ | 101.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 101.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 101.4.2.1 | $x^{4} + 505 x^{2} + 91809$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 101.8.4.1 | $x^{8} + 244824 x^{4} - 1030301 x^{2} + 14984697744$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 6578749 | Data not computed | ||||||