Properties

Label 16.0.12591335010...8397.1
Degree $16$
Signature $[0, 8]$
Discriminant $3^{8}\cdot 7^{3}\cdot 13^{8}\cdot 19^{3}$
Root discriminant $15.62$
Ramified primes $3, 7, 13, 19$
Class number $2$
Class group $[2]$
Galois group 16T1477

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 3, -8, -28, 7, 61, 56, 11, -41, -37, 18, -4, 16, -2, -4, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - x^15 - 4*x^14 - 2*x^13 + 16*x^12 - 4*x^11 + 18*x^10 - 37*x^9 - 41*x^8 + 11*x^7 + 56*x^6 + 61*x^5 + 7*x^4 - 28*x^3 - 8*x^2 + 3*x + 1)
 
gp: K = bnfinit(x^16 - x^15 - 4*x^14 - 2*x^13 + 16*x^12 - 4*x^11 + 18*x^10 - 37*x^9 - 41*x^8 + 11*x^7 + 56*x^6 + 61*x^5 + 7*x^4 - 28*x^3 - 8*x^2 + 3*x + 1, 1)
 

Normalized defining polynomial

\( x^{16} - x^{15} - 4 x^{14} - 2 x^{13} + 16 x^{12} - 4 x^{11} + 18 x^{10} - 37 x^{9} - 41 x^{8} + 11 x^{7} + 56 x^{6} + 61 x^{5} + 7 x^{4} - 28 x^{3} - 8 x^{2} + 3 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(12591335010550238397=3^{8}\cdot 7^{3}\cdot 13^{8}\cdot 19^{3}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $15.62$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 7, 13, 19$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{24344076113} a^{15} + \frac{6659797603}{24344076113} a^{14} + \frac{9743474701}{24344076113} a^{13} - \frac{1293852874}{24344076113} a^{12} - \frac{887556770}{3477725159} a^{11} + \frac{11224320964}{24344076113} a^{10} - \frac{3748329027}{24344076113} a^{9} - \frac{7160783929}{24344076113} a^{8} - \frac{2270496189}{24344076113} a^{7} + \frac{7944093412}{24344076113} a^{6} - \frac{4408863220}{24344076113} a^{5} + \frac{2063580326}{24344076113} a^{4} + \frac{1550030455}{24344076113} a^{3} + \frac{4766872136}{24344076113} a^{2} - \frac{2160708638}{24344076113} a - \frac{7295260682}{24344076113}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -\frac{18184484}{11110943} a^{15} - \frac{1107341}{11110943} a^{14} + \frac{87061096}{11110943} a^{13} + \frac{114785152}{11110943} a^{12} - \frac{229855676}{11110943} a^{11} - \frac{211043952}{11110943} a^{10} - \frac{317083857}{11110943} a^{9} + \frac{291767013}{11110943} a^{8} + \frac{1370356441}{11110943} a^{7} + \frac{698050497}{11110943} a^{6} - \frac{905559248}{11110943} a^{5} - \frac{2073729524}{11110943} a^{4} - \frac{1543361648}{11110943} a^{3} - \frac{111324176}{11110943} a^{2} + \frac{366037232}{11110943} a + \frac{109941768}{11110943} \) (order $6$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 1443.45014484 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1477:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 2048
The 74 conjugacy class representatives for t16n1477 are not computed
Character table for t16n1477 is not computed

Intermediate fields

\(\Q(\sqrt{-3}) \), 4.0.117.1, 8.0.307687653.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $16$ R $16$ R ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ R ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ $16$ ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
3Data not computed
$7$$\Q_{7}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{7}$$x + 2$$1$$1$$0$Trivial$[\ ]$
7.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
7.4.0.1$x^{4} + x^{2} - 3 x + 5$$1$$4$$0$$C_4$$[\ ]^{4}$
7.4.3.1$x^{4} + 14$$4$$1$$3$$D_{4}$$[\ ]_{4}^{2}$
7.4.0.1$x^{4} + x^{2} - 3 x + 5$$1$$4$$0$$C_4$$[\ ]^{4}$
$13$13.2.1.2$x^{2} + 26$$2$$1$$1$$C_2$$[\ ]_{2}$
13.2.1.2$x^{2} + 26$$2$$1$$1$$C_2$$[\ ]_{2}$
13.4.2.1$x^{4} + 39 x^{2} + 676$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
13.8.4.1$x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$19$19.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
19.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
19.4.3.2$x^{4} - 19$$4$$1$$3$$D_{4}$$[\ ]_{4}^{2}$
19.8.0.1$x^{8} - x + 2$$1$$8$$0$$C_8$$[\ ]^{8}$