Normalized defining polynomial
\( x^{16} + 2 x^{14} - 14 x^{13} - 6 x^{12} - 21 x^{11} + 45 x^{10} + 43 x^{9} + 120 x^{8} + 96 x^{7} + 142 x^{6} + 99 x^{5} + 101 x^{4} + 58 x^{3} + 61 x^{2} + 5 x + 25 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1257791680575160641=3^{8}\cdot 61^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $13.53$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{6} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{9} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{4} - \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{15} a^{12} + \frac{2}{15} a^{11} + \frac{1}{3} a^{9} - \frac{4}{15} a^{8} - \frac{4}{15} a^{7} + \frac{1}{15} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{5} a^{3} + \frac{2}{5} a^{2} + \frac{4}{15} a + \frac{1}{3}$, $\frac{1}{15} a^{13} + \frac{1}{15} a^{11} + \frac{2}{5} a^{9} + \frac{4}{15} a^{8} + \frac{4}{15} a^{7} + \frac{1}{5} a^{6} + \frac{7}{15} a^{4} + \frac{7}{15} a^{3} - \frac{1}{5} a^{2} + \frac{2}{15} a - \frac{1}{3}$, $\frac{1}{75} a^{14} - \frac{2}{75} a^{13} + \frac{2}{75} a^{12} + \frac{1}{75} a^{10} - \frac{8}{75} a^{9} + \frac{7}{75} a^{8} + \frac{7}{25} a^{7} + \frac{2}{5} a^{6} + \frac{32}{75} a^{5} + \frac{28}{75} a^{4} - \frac{2}{15} a^{3} - \frac{7}{25} a^{2} - \frac{7}{15} a + \frac{1}{3}$, $\frac{1}{9872393925} a^{15} - \frac{19826417}{9872393925} a^{14} + \frac{203152627}{9872393925} a^{13} + \frac{40241498}{1974478785} a^{12} - \frac{468608088}{3290797975} a^{11} + \frac{138242302}{9872393925} a^{10} - \frac{3917269453}{9872393925} a^{9} - \frac{2680251434}{9872393925} a^{8} + \frac{153332831}{658159595} a^{7} + \frac{2051900287}{9872393925} a^{6} - \frac{3533256202}{9872393925} a^{5} - \frac{49302958}{1974478785} a^{4} - \frac{3003669316}{9872393925} a^{3} + \frac{294097111}{658159595} a^{2} - \frac{97023181}{1974478785} a + \frac{20342232}{131631919}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{2760391}{1974478785} a^{15} - \frac{71545502}{1974478785} a^{14} - \frac{2499763}{394895757} a^{13} - \frac{71438177}{1974478785} a^{12} + \frac{68160385}{131631919} a^{11} + \frac{627927379}{1974478785} a^{10} + \frac{976367809}{1974478785} a^{9} - \frac{1231248489}{658159595} a^{8} - \frac{4229184002}{1974478785} a^{7} - \frac{7617247754}{1974478785} a^{6} - \frac{1740737122}{658159595} a^{5} - \frac{7292411429}{1974478785} a^{4} - \frac{5255462869}{1974478785} a^{3} - \frac{5761925512}{1974478785} a^{2} - \frac{647306611}{658159595} a - \frac{111879376}{131631919} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 809.594531745 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 7 conjugacy class representatives for $D_{8}$ |
| Character table for $D_{8}$ |
Intermediate fields
| \(\Q(\sqrt{-183}) \), \(\Q(\sqrt{61}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-3}, \sqrt{61})\), 4.2.11163.1 x2, 4.0.549.1 x2, 8.0.1121513121.2, 8.2.373837707.1 x4, 8.0.18385461.1 x4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $61$ | 61.4.2.1 | $x^{4} + 183 x^{2} + 14884$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 61.4.2.1 | $x^{4} + 183 x^{2} + 14884$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 61.4.2.1 | $x^{4} + 183 x^{2} + 14884$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 61.4.2.1 | $x^{4} + 183 x^{2} + 14884$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |