Normalized defining polynomial
\( x^{16} - 8 x^{15} + 292 x^{14} - 1904 x^{13} + 34474 x^{12} - 182456 x^{11} + 2108384 x^{10} - 8913832 x^{9} + 71059739 x^{8} - 232686904 x^{7} + 1292149168 x^{6} - 3097554280 x^{5} + 11477990842 x^{4} - 18047994784 x^{3} + 37498043644 x^{2} - 28954052376 x + 82125187631 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(12566407444765825894344294400000000=2^{62}\cdot 5^{8}\cdot 17^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $135.27$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2720=2^{5}\cdot 5\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2720}(1,·)$, $\chi_{2720}(2379,·)$, $\chi_{2720}(1089,·)$, $\chi_{2720}(1291,·)$, $\chi_{2720}(1361,·)$, $\chi_{2720}(1699,·)$, $\chi_{2720}(409,·)$, $\chi_{2720}(2651,·)$, $\chi_{2720}(611,·)$, $\chi_{2720}(2449,·)$, $\chi_{2720}(681,·)$, $\chi_{2720}(339,·)$, $\chi_{2720}(1769,·)$, $\chi_{2720}(2041,·)$, $\chi_{2720}(1019,·)$, $\chi_{2720}(1971,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{17} a^{4} - \frac{2}{17} a^{3} - \frac{1}{17} a^{2} + \frac{2}{17} a + \frac{1}{17}$, $\frac{1}{17} a^{5} - \frac{5}{17} a^{3} + \frac{5}{17} a + \frac{2}{17}$, $\frac{1}{17} a^{6} + \frac{7}{17} a^{3} - \frac{5}{17} a + \frac{5}{17}$, $\frac{1}{17} a^{7} - \frac{3}{17} a^{3} + \frac{2}{17} a^{2} + \frac{8}{17} a - \frac{7}{17}$, $\frac{1}{289} a^{8} - \frac{4}{289} a^{7} + \frac{2}{289} a^{6} + \frac{8}{289} a^{5} - \frac{5}{289} a^{4} - \frac{8}{289} a^{3} + \frac{2}{289} a^{2} + \frac{4}{289} a + \frac{1}{289}$, $\frac{1}{289} a^{9} + \frac{3}{289} a^{7} - \frac{1}{289} a^{6} - \frac{7}{289} a^{5} + \frac{6}{289} a^{4} - \frac{98}{289} a^{3} + \frac{12}{289} a^{2} + \frac{8}{17} a + \frac{55}{289}$, $\frac{1}{289} a^{10} - \frac{6}{289} a^{7} + \frac{4}{289} a^{6} - \frac{1}{289} a^{5} + \frac{2}{289} a^{4} - \frac{49}{289} a^{3} + \frac{11}{289} a^{2} + \frac{77}{289} a + \frac{31}{289}$, $\frac{1}{289} a^{11} - \frac{3}{289} a^{7} - \frac{6}{289} a^{6} - \frac{1}{289} a^{5} + \frac{6}{289} a^{4} - \frac{122}{289} a^{3} + \frac{38}{289} a^{2} - \frac{98}{289} a + \frac{74}{289}$, $\frac{1}{4913} a^{12} - \frac{6}{4913} a^{11} - \frac{8}{4913} a^{10} - \frac{7}{4913} a^{9} + \frac{4}{4913} a^{8} - \frac{91}{4913} a^{7} + \frac{58}{4913} a^{6} + \frac{125}{4913} a^{5} - \frac{47}{4913} a^{4} - \frac{1829}{4913} a^{3} - \frac{603}{4913} a^{2} + \frac{567}{4913} a - \frac{1716}{4913}$, $\frac{1}{4913} a^{13} + \frac{7}{4913} a^{11} - \frac{4}{4913} a^{10} - \frac{4}{4913} a^{9} + \frac{1}{4913} a^{8} + \frac{39}{4913} a^{7} - \frac{105}{4913} a^{6} + \frac{40}{4913} a^{5} - \frac{105}{4913} a^{4} - \frac{79}{289} a^{3} + \frac{570}{4913} a^{2} + \frac{2043}{4913} a + \frac{754}{4913}$, $\frac{1}{201124593788475101400289} a^{14} - \frac{7}{201124593788475101400289} a^{13} + \frac{1142297365547990704}{11830858458145594200017} a^{12} - \frac{116514331285895051717}{201124593788475101400289} a^{11} - \frac{204014225988407678216}{201124593788475101400289} a^{10} + \frac{320615291951898316}{201124593788475101400289} a^{9} + \frac{163635889663114268736}{201124593788475101400289} a^{8} + \frac{2933405058805054166566}{201124593788475101400289} a^{7} - \frac{3792451557348165994814}{201124593788475101400289} a^{6} - \frac{1712562623229148397031}{201124593788475101400289} a^{5} - \frac{3766930288852355518381}{201124593788475101400289} a^{4} + \frac{34858874638969784345248}{201124593788475101400289} a^{3} + \frac{32325470611321057901839}{201124593788475101400289} a^{2} - \frac{74627309852144357782528}{201124593788475101400289} a - \frac{1814098529450546310863}{6487890122208874238719}$, $\frac{1}{14138644023292814004306127903793} a^{15} + \frac{35148961}{14138644023292814004306127903793} a^{14} + \frac{1198456279106523697168803631}{14138644023292814004306127903793} a^{13} + \frac{87100369249151493460722856}{14138644023292814004306127903793} a^{12} - \frac{12698760204803821078029689262}{14138644023292814004306127903793} a^{11} - \frac{22369388923521085035958480627}{14138644023292814004306127903793} a^{10} + \frac{1336606601096137614012183702}{831684942546636117900360464929} a^{9} + \frac{5557252613371188963356198760}{14138644023292814004306127903793} a^{8} - \frac{372498580281186834425299432294}{14138644023292814004306127903793} a^{7} + \frac{170542073812094891414132690112}{14138644023292814004306127903793} a^{6} + \frac{16046852859153822279642658279}{831684942546636117900360464929} a^{5} - \frac{198290403171442567247103191883}{14138644023292814004306127903793} a^{4} + \frac{4713817704198784783879224582657}{14138644023292814004306127903793} a^{3} + \frac{4675171167589462963222009790842}{14138644023292814004306127903793} a^{2} - \frac{5094065758653782550779123193278}{14138644023292814004306127903793} a + \frac{141570685476382513422153456038}{456085291073961742074391222703}$
Class group and class number
$C_{4}\times C_{4}\times C_{60}\times C_{2040}$, which has order $1958400$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 12198.951274811623 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_8$ (as 16T5):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_8\times C_2$ |
| Character table for $C_8\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{10}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{2}, \sqrt{5})\), \(\Q(\zeta_{16})^+\), 4.4.51200.1, 8.8.2621440000.1, 8.0.112099988602880000.1, 8.0.179359981764608.32 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $17$ | 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |