Normalized defining polynomial
\( x^{16} - 6 x^{15} + 13 x^{14} - 58 x^{13} + 287 x^{12} - 646 x^{11} + 1511 x^{10} - 4583 x^{9} + 6745 x^{8} - 4461 x^{7} + 8534 x^{6} - 8942 x^{5} + 6562 x^{4} - 3277 x^{3} + 4714 x^{2} - 235 x + 2209 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(125515156113146867692601089=17^{10}\cdot 53^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $42.77$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{1316} a^{14} + \frac{121}{658} a^{13} + \frac{26}{329} a^{12} - \frac{29}{329} a^{11} + \frac{27}{188} a^{10} - \frac{76}{329} a^{9} - \frac{257}{658} a^{8} + \frac{15}{1316} a^{7} + \frac{407}{1316} a^{6} - \frac{149}{658} a^{5} - \frac{275}{1316} a^{4} - \frac{313}{658} a^{3} - \frac{213}{1316} a^{2} - \frac{359}{1316} a + \frac{1}{28}$, $\frac{1}{209415058143207176758558640104} a^{15} + \frac{60190200017159303178855207}{209415058143207176758558640104} a^{14} - \frac{651609724368744820230370559}{3739554609700128156402832859} a^{13} + \frac{24669818636003411870789501625}{104707529071603588379279320052} a^{12} + \frac{47250927364975788596274127869}{209415058143207176758558640104} a^{11} - \frac{71520998105276003533468163381}{209415058143207176758558640104} a^{10} - \frac{26472712026685281835914115555}{104707529071603588379279320052} a^{9} - \frac{38881624215422295599045985845}{209415058143207176758558640104} a^{8} - \frac{21435202805008054648107160003}{52353764535801794189639660026} a^{7} + \frac{43587196749908683052180883147}{209415058143207176758558640104} a^{6} + \frac{4891608286658715862468886305}{209415058143207176758558640104} a^{5} + \frac{6936427454505707597461697117}{29916436877601025251222662872} a^{4} - \frac{31773159687710378409507214783}{209415058143207176758558640104} a^{3} + \frac{6950451242130720365476155321}{26176882267900897094819830013} a^{2} + \frac{27908355741329420663862095817}{104707529071603588379279320052} a - \frac{1039404234659455611165270203}{4455639534961854824650183832}$
Class group and class number
$C_{5}$, which has order $5$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 452391.453967 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4\wr C_2$ (as 16T42):
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_4\wr C_2$ |
| Character table for $C_4\wr C_2$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), \(\Q(\sqrt{53}) \), \(\Q(\sqrt{901}) \), 4.4.15317.1 x2, 4.4.47753.1 x2, \(\Q(\sqrt{17}, \sqrt{53})\), 8.0.38765933153.1, 8.0.11203354681217.1, 8.8.659020863601.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/47.1.0.1}{1} }^{16}$ | R | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.8.6.2 | $x^{8} + 85 x^{4} + 2601$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 17.8.4.1 | $x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $53$ | 53.8.4.1 | $x^{8} + 101124 x^{4} - 148877 x^{2} + 2556515844$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 53.8.4.1 | $x^{8} + 101124 x^{4} - 148877 x^{2} + 2556515844$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |