Normalized defining polynomial
\( x^{16} - 24 x^{14} + 484 x^{12} - 5833 x^{10} + 36700 x^{8} - 98607 x^{6} + 223934 x^{4} + 762575 x^{2} + 1841449 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(12551165043538064715930071464321=29^{14}\cdot 59^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $87.84$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $29, 59$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{14} a^{10} - \frac{1}{2} a^{7} + \frac{2}{7} a^{6} - \frac{1}{2} a^{5} - \frac{3}{7} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} + \frac{2}{7}$, $\frac{1}{14} a^{11} + \frac{2}{7} a^{7} - \frac{1}{2} a^{6} + \frac{1}{14} a^{5} - \frac{1}{2} a^{4} - \frac{3}{14} a - \frac{1}{2}$, $\frac{1}{14} a^{12} - \frac{3}{14} a^{8} - \frac{1}{2} a^{7} + \frac{1}{14} a^{6} - \frac{1}{2} a^{3} - \frac{3}{14} a^{2} - \frac{1}{2}$, $\frac{1}{14} a^{13} - \frac{3}{14} a^{9} + \frac{1}{14} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} + \frac{2}{7} a^{3} - \frac{1}{2}$, $\frac{1}{594591989650175016206} a^{14} + \frac{2352927718624049523}{594591989650175016206} a^{12} + \frac{46288308532503799}{297295994825087508103} a^{10} + \frac{3503665503122901896}{42470856403583929729} a^{8} + \frac{115671439171379895469}{297295994825087508103} a^{6} + \frac{42381746697410211713}{297295994825087508103} a^{4} + \frac{105042745819779318218}{297295994825087508103} a^{2} - \frac{1}{2} a - \frac{1227500756218901193}{10077830333053813834}$, $\frac{1}{13675615761954025372738} a^{15} - \frac{189942389956815659019}{6837807880977012686369} a^{13} + \frac{24275673417552603245}{976829697282430383767} a^{11} + \frac{1638418201858049642974}{6837807880977012686369} a^{9} - \frac{2359379362275859922531}{13675615761954025372738} a^{7} - \frac{1}{2} a^{6} - \frac{406532228350352961125}{1953659394564860767534} a^{5} + \frac{232455315030531107405}{6837807880977012686369} a^{3} + \frac{13423227585786932958}{115895048830118859091} a - \frac{1}{2}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 176629196.777 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_4$ (as 16T41):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_2^3.C_4$ |
| Character table for $C_2^3.C_4$ |
Intermediate fields
| \(\Q(\sqrt{29}) \), 4.0.24389.1, 4.2.49619.1, 4.2.1438951.1, 8.0.60046819431629.1 x2, 8.0.2070579980401.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 29 | Data not computed | ||||||
| 59 | Data not computed | ||||||