Normalized defining polynomial
\( x^{16} - x^{15} + 6 x^{14} - 17 x^{13} + 17 x^{12} + 49 x^{11} - 78 x^{10} + 833 x^{9} - 2129 x^{8} + 4998 x^{7} - 2808 x^{6} + 10584 x^{5} + 22032 x^{4} - 132192 x^{3} + 279936 x^{2} - 279936 x + 1679616 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(125439056256992431640625=3^{8}\cdot 5^{12}\cdot 23^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $27.77$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(345=3\cdot 5\cdot 23\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{345}(1,·)$, $\chi_{345}(323,·)$, $\chi_{345}(68,·)$, $\chi_{345}(137,·)$, $\chi_{345}(139,·)$, $\chi_{345}(206,·)$, $\chi_{345}(208,·)$, $\chi_{345}(277,·)$, $\chi_{345}(22,·)$, $\chi_{345}(344,·)$, $\chi_{345}(91,·)$, $\chi_{345}(229,·)$, $\chi_{345}(298,·)$, $\chi_{345}(47,·)$, $\chi_{345}(116,·)$, $\chi_{345}(254,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{6} a^{9} - \frac{1}{6} a^{8} + \frac{1}{6} a^{6} - \frac{1}{6} a^{5} + \frac{1}{6} a^{4} - \frac{1}{6} a^{2} + \frac{1}{6} a$, $\frac{1}{684} a^{10} - \frac{1}{36} a^{9} - \frac{1}{3} a^{8} + \frac{1}{36} a^{7} + \frac{17}{36} a^{6} - \frac{257}{684} a^{5} + \frac{1}{3} a^{4} - \frac{13}{36} a^{3} - \frac{5}{36} a^{2} + \frac{1}{3} a + \frac{7}{19}$, $\frac{1}{4104} a^{11} - \frac{1}{4104} a^{10} + \frac{1}{36} a^{9} + \frac{73}{216} a^{8} + \frac{35}{216} a^{7} + \frac{1453}{4104} a^{6} + \frac{293}{684} a^{5} + \frac{95}{216} a^{4} + \frac{13}{216} a^{3} + \frac{5}{36} a^{2} + \frac{15}{38} a + \frac{2}{19}$, $\frac{1}{123120} a^{12} + \frac{1}{24624} a^{11} + \frac{1}{6480} a^{9} + \frac{613}{1296} a^{8} - \frac{6709}{24624} a^{7} + \frac{1}{570} a^{6} - \frac{269}{1296} a^{5} - \frac{229}{1296} a^{4} + \frac{1}{5} a^{3} - \frac{29}{684} a^{2} + \frac{17}{114} a - \frac{1}{5}$, $\frac{1}{2219853600} a^{13} + \frac{7421}{2219853600} a^{12} + \frac{1261}{12332520} a^{11} - \frac{189881}{2219853600} a^{10} - \frac{6081799}{116834400} a^{9} + \frac{209839703}{443970720} a^{8} - \frac{24907349}{61662600} a^{7} + \frac{274669241}{2219853600} a^{6} - \frac{46734367}{443970720} a^{5} - \frac{1107749}{3245400} a^{4} + \frac{901616}{2569275} a^{3} - \frac{4643}{114190} a^{2} + \frac{77621}{285475} a - \frac{83614}{285475}$, $\frac{1}{13319121600} a^{14} - \frac{1}{13319121600} a^{13} - \frac{737}{2219853600} a^{12} + \frac{1149859}{13319121600} a^{11} - \frac{1171999}{13319121600} a^{10} - \frac{458842163}{13319121600} a^{9} - \frac{159295099}{2219853600} a^{8} - \frac{4019426851}{13319121600} a^{7} - \frac{2348716577}{13319121600} a^{6} + \frac{750753959}{2219853600} a^{5} - \frac{59664203}{123325200} a^{4} + \frac{1024343}{6851400} a^{3} + \frac{122706}{285475} a^{2} - \frac{413651}{1712850} a - \frac{25622}{285475}$, $\frac{1}{79914729600} a^{15} - \frac{1}{79914729600} a^{14} + \frac{1}{13319121600} a^{13} + \frac{13573}{4206038400} a^{12} - \frac{114661}{4206038400} a^{11} + \frac{5015569}{79914729600} a^{10} - \frac{820750117}{13319121600} a^{9} - \frac{3458710831}{79914729600} a^{8} + \frac{414681349}{4206038400} a^{7} + \frac{11167403}{701006400} a^{6} + \frac{126726281}{369975600} a^{5} + \frac{179200459}{369975600} a^{4} - \frac{22444417}{61662600} a^{3} + \frac{63389}{135225} a^{2} - \frac{20998}{45075} a + \frac{91743}{285475}$
Class group and class number
$C_{15}$, which has order $15$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{1}{2055420} a^{15} + \frac{11}{10277100} a^{14} - \frac{11}{1712850} a^{12} + \frac{29}{10277100} a^{11} - \frac{151}{2055420} a^{10} + \frac{36}{285475} a^{9} - \frac{151}{540900} a^{8} - \frac{73}{342570} a^{7} - \frac{216}{285475} a^{6} - \frac{906}{285475} a^{5} + \frac{612}{57095} a^{4} - \frac{216}{15025} a^{3} + \frac{1609901}{10277100} a^{2} - \frac{7776}{57095} a - \frac{46656}{285475} \) (order $30$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 93215.7577208 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_4$ (as 16T2):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4\times C_2^2$ |
| Character table for $C_4\times C_2^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $23$ | 23.8.4.1 | $x^{8} + 11638 x^{4} - 12167 x^{2} + 33860761$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 23.8.4.1 | $x^{8} + 11638 x^{4} - 12167 x^{2} + 33860761$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |