Properties

Label 16.0.12517949420...0625.1
Degree $16$
Signature $[0, 8]$
Discriminant $5^{8}\cdot 89^{6}\cdot 401^{3}$
Root discriminant $37.03$
Ramified primes $5, 89, 401$
Class number $2$ (GRH)
Class group $[2]$ (GRH)
Galois group 16T1722

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![16976, -61896, 101920, -96082, 50809, -6434, -13159, 13160, -6134, 312, 1392, -674, 8, 72, -13, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 2*x^15 - 13*x^14 + 72*x^13 + 8*x^12 - 674*x^11 + 1392*x^10 + 312*x^9 - 6134*x^8 + 13160*x^7 - 13159*x^6 - 6434*x^5 + 50809*x^4 - 96082*x^3 + 101920*x^2 - 61896*x + 16976)
 
gp: K = bnfinit(x^16 - 2*x^15 - 13*x^14 + 72*x^13 + 8*x^12 - 674*x^11 + 1392*x^10 + 312*x^9 - 6134*x^8 + 13160*x^7 - 13159*x^6 - 6434*x^5 + 50809*x^4 - 96082*x^3 + 101920*x^2 - 61896*x + 16976, 1)
 

Normalized defining polynomial

\( x^{16} - 2 x^{15} - 13 x^{14} + 72 x^{13} + 8 x^{12} - 674 x^{11} + 1392 x^{10} + 312 x^{9} - 6134 x^{8} + 13160 x^{7} - 13159 x^{6} - 6434 x^{5} + 50809 x^{4} - 96082 x^{3} + 101920 x^{2} - 61896 x + 16976 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(12517949420193642250390625=5^{8}\cdot 89^{6}\cdot 401^{3}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $37.03$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 89, 401$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{11} - \frac{1}{2} a$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{3}$, $\frac{1}{992} a^{14} + \frac{21}{992} a^{13} + \frac{3}{124} a^{12} + \frac{3}{16} a^{11} + \frac{15}{496} a^{10} - \frac{27}{248} a^{9} - \frac{11}{124} a^{8} - \frac{21}{124} a^{7} - \frac{7}{496} a^{6} - \frac{13}{496} a^{5} - \frac{73}{992} a^{4} + \frac{11}{992} a^{3} + \frac{73}{248} a^{2} + \frac{29}{62} a + \frac{27}{124}$, $\frac{1}{9366023813023588375986976} a^{15} + \frac{2512498843563082524311}{9366023813023588375986976} a^{14} + \frac{574011115115839376217153}{4683011906511794187993488} a^{13} + \frac{190513459565520646854737}{4683011906511794187993488} a^{12} - \frac{16009347224566408429679}{4683011906511794187993488} a^{11} + \frac{47575479471735744785260}{292688244156987136749593} a^{10} + \frac{137221531530494563107359}{585376488313974273499186} a^{9} - \frac{276838611992462535065409}{1170752976627948546998372} a^{8} - \frac{513752431304209376961647}{4683011906511794187993488} a^{7} + \frac{930727898023109760807981}{4683011906511794187993488} a^{6} - \frac{4105298013932465744281517}{9366023813023588375986976} a^{5} + \frac{1849509972536053423763577}{9366023813023588375986976} a^{4} - \frac{1442706046661621969818299}{4683011906511794187993488} a^{3} + \frac{129746062321577440474754}{292688244156987136749593} a^{2} + \frac{19752215969691498324435}{1170752976627948546998372} a + \frac{5360585351109995525731}{585376488313974273499186}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 953403.096109 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1722:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 8192
The 104 conjugacy class representatives for t16n1722 are not computed
Character table for t16n1722 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 4.4.2225.1, 8.0.440605625.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }^{4}$ $16$ R ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ $16$ ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ $16$ ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{6}$ $16$ ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{6}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$5$5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$89$89.4.0.1$x^{4} - x + 27$$1$$4$$0$$C_4$$[\ ]^{4}$
89.4.3.3$x^{4} + 267$$4$$1$$3$$C_4$$[\ ]_{4}$
89.4.3.3$x^{4} + 267$$4$$1$$3$$C_4$$[\ ]_{4}$
89.4.0.1$x^{4} - x + 27$$1$$4$$0$$C_4$$[\ ]^{4}$
401Data not computed