Normalized defining polynomial
\( x^{16} - 6 x^{15} + 27 x^{14} - 74 x^{13} + 179 x^{12} - 446 x^{11} + 1128 x^{10} - 2631 x^{9} + 3693 x^{8} - 5889 x^{7} + 20768 x^{6} - 79152 x^{5} + 204035 x^{4} - 351523 x^{3} + 557706 x^{2} - 743902 x + 652231 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(124784363598789404541015625=5^{12}\cdot 59^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $42.76$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 59$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{15} a^{12} + \frac{1}{15} a^{11} + \frac{1}{3} a^{10} + \frac{1}{15} a^{8} - \frac{1}{3} a^{7} + \frac{4}{15} a^{6} - \frac{1}{3} a^{5} - \frac{4}{15} a^{4} - \frac{1}{3} a^{2} + \frac{2}{5} a - \frac{4}{15}$, $\frac{1}{15} a^{13} + \frac{4}{15} a^{11} - \frac{1}{3} a^{10} + \frac{1}{15} a^{9} - \frac{2}{5} a^{8} - \frac{2}{5} a^{7} + \frac{2}{5} a^{6} + \frac{1}{15} a^{5} + \frac{4}{15} a^{4} - \frac{1}{3} a^{3} - \frac{4}{15} a^{2} + \frac{1}{3} a + \frac{4}{15}$, $\frac{1}{105} a^{14} + \frac{2}{105} a^{12} + \frac{8}{105} a^{11} + \frac{17}{35} a^{10} + \frac{8}{35} a^{9} - \frac{38}{105} a^{8} - \frac{29}{105} a^{7} + \frac{38}{105} a^{6} - \frac{1}{105} a^{5} - \frac{4}{35} a^{4} + \frac{41}{105} a^{3} - \frac{1}{7} a^{2} + \frac{22}{105} a - \frac{37}{105}$, $\frac{1}{243408506351774261896294356399212595} a^{15} - \frac{133557696558451216142754304291249}{81136168783924753965431452133070865} a^{14} + \frac{355226804228687346781212880041184}{48681701270354852379258871279842519} a^{13} - \frac{891049943677822108837977736983197}{243408506351774261896294356399212595} a^{12} - \frac{69836420048923147904254733686289554}{243408506351774261896294356399212595} a^{11} - \frac{41195410417791072787554788515939658}{243408506351774261896294356399212595} a^{10} - \frac{7244052575544693385009229293202318}{243408506351774261896294356399212595} a^{9} - \frac{18621226227733474981280313841122479}{81136168783924753965431452133070865} a^{8} - \frac{9879046465689393082598245796079752}{243408506351774261896294356399212595} a^{7} - \frac{57032353838397839171164992389492183}{243408506351774261896294356399212595} a^{6} + \frac{14045592478042892070794060593855493}{243408506351774261896294356399212595} a^{5} + \frac{29492098892689370219092631329094802}{81136168783924753965431452133070865} a^{4} + \frac{1326124724179376786469375540236563}{11590881254846393423633064590438695} a^{3} + \frac{1648349445409123350943005918872857}{16227233756784950793086290426614173} a^{2} + \frac{76296733267795216594293225558158738}{243408506351774261896294356399212595} a + \frac{24225403077207726034503376420931198}{48681701270354852379258871279842519}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 790297.748928 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4.D_4$ (as 16T330):
| A solvable group of order 128 |
| The 23 conjugacy class representatives for $C_2^4.D_4$ |
| Character table for $C_2^4.D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.2.1475.1, 8.0.37866753125.1, 8.2.3209046875.2, 8.2.2234138434375.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 59 | Data not computed | ||||||