Normalized defining polynomial
\( x^{16} - x^{15} + 28 x^{14} - 22 x^{13} + 406 x^{12} - 166 x^{11} + 3195 x^{10} + 419 x^{9} + 16899 x^{8} + 7188 x^{7} + 67910 x^{6} + 39372 x^{5} + 182396 x^{4} + 116616 x^{3} + 322952 x^{2} + 129952 x + 274576 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(12476445670501562500000000=2^{8}\cdot 5^{14}\cdot 41^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $37.03$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{11} - \frac{1}{2} a^{9} + \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4}$, $\frac{1}{8} a^{14} - \frac{1}{8} a^{13} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} + \frac{1}{4} a^{9} + \frac{3}{8} a^{8} + \frac{3}{8} a^{7} - \frac{1}{8} a^{6} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{10762952189662400129628043467843688} a^{15} + \frac{492881796929738572629752899170175}{10762952189662400129628043467843688} a^{14} + \frac{192175068074366791385380887842131}{5381476094831200064814021733921844} a^{13} - \frac{261673188953024557691985877948851}{2690738047415600032407010866960922} a^{12} - \frac{1009384300207828561276914284838847}{5381476094831200064814021733921844} a^{11} + \frac{65838124200419678851612550969885}{489225099530109096801274703083804} a^{10} - \frac{4286729829237956340378678484687001}{10762952189662400129628043467843688} a^{9} - \frac{222596457852024155965718363603665}{10762952189662400129628043467843688} a^{8} + \frac{24487269864972143560188655971843}{82159940379102291065862927235448} a^{7} + \frac{1821743310098278314472449358586327}{5381476094831200064814021733921844} a^{6} + \frac{424531645468826114862506911174585}{1345369023707800016203505433480461} a^{5} - \frac{28403284602241376685134719462465}{122306274882527274200318675770951} a^{4} - \frac{462988416949086555135717835914306}{1345369023707800016203505433480461} a^{3} - \frac{281566710594469754029056617148852}{1345369023707800016203505433480461} a^{2} - \frac{50213856972152988426813564137484}{122306274882527274200318675770951} a - \frac{3183110600974255247012745542159}{10269992547387786383232865904431}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{11295486078016229085505169}{587433259996856245476915373204} a^{15} + \frac{71300246747195958576648077}{1174866519993712490953830746408} a^{14} - \frac{599897830267985283087543779}{1174866519993712490953830746408} a^{13} + \frac{405418607519473332959383577}{293716629998428122738457686602} a^{12} - \frac{4093054663357615140602711983}{587433259996856245476915373204} a^{11} + \frac{806704767148946403652601119}{53403023636077840497901397564} a^{10} - \frac{6535391070261575692289332833}{146858314999214061369228843301} a^{9} + \frac{79268753620244658669261364979}{1174866519993712490953830746408} a^{8} - \frac{1381925724055399297743235463}{8968446717509255656136112568} a^{7} + \frac{295430138311083549617736772469}{1174866519993712490953830746408} a^{6} - \frac{61283912434128802283308869011}{146858314999214061369228843301} a^{5} + \frac{36255238348066181354571321931}{53403023636077840497901397564} a^{4} - \frac{56806180397489836176084086166}{146858314999214061369228843301} a^{3} + \frac{333055755901800338331803638281}{293716629998428122738457686602} a^{2} - \frac{1825439871545751028595179395}{13350755909019460124475349391} a + \frac{1851024983051557478786199463}{1121055839688656957017014071} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 622261.644536 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times Q_8).C_2^3$ (as 16T226):
| A solvable group of order 128 |
| The 23 conjugacy class representatives for $(C_2\times Q_8).C_2^3$ |
| Character table for $(C_2\times Q_8).C_2^3$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 4.0.1025.1, 4.4.5125.1, 8.0.26265625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.4 | $x^{8} + 2 x^{7} + 2 x^{6} + 8 x^{3} + 48$ | $2$ | $4$ | $8$ | $C_8$ | $[2]^{4}$ |
| 2.8.0.1 | $x^{8} + x^{4} + x^{3} + x + 1$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| $5$ | 5.8.7.2 | $x^{8} - 20$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 5.8.7.2 | $x^{8} - 20$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| $41$ | 41.4.2.2 | $x^{4} - 41 x^{2} + 20172$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 41.4.3.4 | $x^{4} + 8856$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 41.4.0.1 | $x^{4} - x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 41.4.3.3 | $x^{4} + 246$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |