Normalized defining polynomial
\( x^{16} - 8 x^{15} + 316 x^{14} - 2072 x^{13} + 43606 x^{12} - 235064 x^{11} + 3446780 x^{10} - 15127576 x^{9} + 171097481 x^{8} - 596127232 x^{7} + 5469084496 x^{6} - 14381845360 x^{5} + 110004994672 x^{4} - 196706722576 x^{3} + 1273174269256 x^{2} - 1177122876720 x + 6489839655038 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1246451284576930712479346307528392704=2^{62}\cdot 151^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $180.29$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 151$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4832=2^{5}\cdot 151\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4832}(1,·)$, $\chi_{4832}(4229,·)$, $\chi_{4832}(2113,·)$, $\chi_{4832}(905,·)$, $\chi_{4832}(3021,·)$, $\chi_{4832}(1813,·)$, $\chi_{4832}(3321,·)$, $\chi_{4832}(2717,·)$, $\chi_{4832}(1509,·)$, $\chi_{4832}(4529,·)$, $\chi_{4832}(3625,·)$, $\chi_{4832}(301,·)$, $\chi_{4832}(605,·)$, $\chi_{4832}(2417,·)$, $\chi_{4832}(1209,·)$, $\chi_{4832}(3925,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{191546083225848628222312097} a^{14} - \frac{7}{191546083225848628222312097} a^{13} - \frac{39174665825651874831146840}{191546083225848628222312097} a^{12} + \frac{43501911728062620764569034}{191546083225848628222312097} a^{11} + \frac{29030742940214748099937262}{191546083225848628222312097} a^{10} - \frac{38946335540107017581237}{6178905910511246071687487} a^{9} + \frac{26748744397166660696610141}{191546083225848628222312097} a^{8} - \frac{4322096621215165550695016}{191546083225848628222312097} a^{7} - \frac{82228810704497981289388550}{191546083225848628222312097} a^{6} - \frac{11077380059830247759195219}{191546083225848628222312097} a^{5} - \frac{15568148048913919845471464}{191546083225848628222312097} a^{4} + \frac{30836559812826771145874511}{191546083225848628222312097} a^{3} - \frac{87325853393690180374953063}{191546083225848628222312097} a^{2} - \frac{80759751048576741733434540}{191546083225848628222312097} a - \frac{66433560287432812779329083}{191546083225848628222312097}$, $\frac{1}{122112828729428682266613607981182433} a^{15} + \frac{318755737}{122112828729428682266613607981182433} a^{14} + \frac{29155393443625078428340633743400081}{122112828729428682266613607981182433} a^{13} - \frac{18827964060214356943916744636735518}{122112828729428682266613607981182433} a^{12} - \frac{41838096617161856313542812944924471}{122112828729428682266613607981182433} a^{11} + \frac{49567589081662806973376941200515698}{122112828729428682266613607981182433} a^{10} - \frac{2024747640084843677889162337656633}{122112828729428682266613607981182433} a^{9} - \frac{24733121150950279285168653119314698}{122112828729428682266613607981182433} a^{8} - \frac{40040849087210752175081804969021248}{122112828729428682266613607981182433} a^{7} + \frac{44923521042020297143994460234702241}{122112828729428682266613607981182433} a^{6} + \frac{32820978663157841165033985432069551}{122112828729428682266613607981182433} a^{5} - \frac{46912406983726804661039259170752620}{122112828729428682266613607981182433} a^{4} + \frac{47511671958255736914726501841891057}{122112828729428682266613607981182433} a^{3} - \frac{14606935429541902377105159526080392}{122112828729428682266613607981182433} a^{2} - \frac{12057821590480220668816314018997559}{122112828729428682266613607981182433} a - \frac{22644684783881652492660462086092907}{122112828729428682266613607981182433}$
Class group and class number
$C_{63904008}$, which has order $63904008$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15753.94986242651 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_8$ (as 16T5):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_8\times C_2$ |
| Character table for $C_8\times C_2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.31.6 | $x^{8} + 16 x^{7} + 28 x^{4} + 16 x^{3} + 2$ | $8$ | $1$ | $31$ | $C_8$ | $[3, 4, 5]$ |
| 2.8.31.6 | $x^{8} + 16 x^{7} + 28 x^{4} + 16 x^{3} + 2$ | $8$ | $1$ | $31$ | $C_8$ | $[3, 4, 5]$ | |
| $151$ | 151.8.4.1 | $x^{8} + 273612 x^{4} - 3442951 x^{2} + 18715881636$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 151.8.4.1 | $x^{8} + 273612 x^{4} - 3442951 x^{2} + 18715881636$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |