Normalized defining polynomial
\( x^{16} - 19 x^{14} + 149 x^{12} - 130 x^{11} - 945 x^{10} + 1547 x^{9} + 7351 x^{8} - 3809 x^{7} - 19423 x^{6} + 43589 x^{5} + 106758 x^{4} - 154765 x^{3} - 194447 x^{2} + 770640 x + 1298079 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(12374161428874698259143289069=13^{14}\cdot 61^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $56.99$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{10} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a$, $\frac{1}{39} a^{12} + \frac{5}{39} a^{11} - \frac{5}{39} a^{10} + \frac{5}{39} a^{9} - \frac{4}{13} a^{8} + \frac{17}{39} a^{7} - \frac{5}{13} a^{6} + \frac{16}{39} a^{5} - \frac{10}{39} a^{4} - \frac{6}{13} a^{3} - \frac{19}{39} a^{2} + \frac{11}{39} a - \frac{4}{13}$, $\frac{1}{234} a^{13} - \frac{1}{234} a^{12} - \frac{35}{234} a^{11} + \frac{35}{234} a^{10} + \frac{19}{39} a^{9} - \frac{14}{117} a^{8} + \frac{1}{3} a^{7} - \frac{11}{234} a^{6} + \frac{25}{117} a^{5} + \frac{7}{39} a^{4} + \frac{25}{117} a^{3} - \frac{109}{234} a^{2} + \frac{1}{6} a - \frac{5}{26}$, $\frac{1}{468} a^{14} - \frac{1}{78} a^{12} + \frac{2}{13} a^{11} + \frac{155}{468} a^{10} + \frac{1}{234} a^{9} + \frac{1}{234} a^{8} - \frac{203}{468} a^{7} + \frac{71}{156} a^{6} - \frac{1}{9} a^{5} - \frac{5}{18} a^{4} - \frac{131}{468} a^{3} - \frac{43}{117} a^{2} + \frac{14}{39} a - \frac{19}{52}$, $\frac{1}{9397765156951710177201290411200296} a^{15} - \frac{1436096238969544300565912821369}{9397765156951710177201290411200296} a^{14} - \frac{877278737316812057203794262937}{1566294192825285029533548401866716} a^{13} - \frac{13189990447723667660120490643}{120484168678868079194888338605132} a^{12} + \frac{501871649209715662834249102510055}{9397765156951710177201290411200296} a^{11} - \frac{314800166026656716982647253353635}{3132588385650570059067096803733432} a^{10} - \frac{373773656408891355417429429560531}{783147096412642514766774200933358} a^{9} + \frac{175401954957588354589160955129731}{722905012073208475169330031630792} a^{8} + \frac{438488689828895636226009727325692}{1174720644618963772150161301400037} a^{7} - \frac{3084320771656713150779956054252765}{9397765156951710177201290411200296} a^{6} + \frac{556863099802167231628831899643807}{1566294192825285029533548401866716} a^{5} + \frac{2233317998271700460695821078913835}{9397765156951710177201290411200296} a^{4} + \frac{2902332844301485769450496425561659}{9397765156951710177201290411200296} a^{3} - \frac{399808577113334386346204096428535}{2349441289237927544300322602800074} a^{2} - \frac{1396064521002605721172838840743441}{3132588385650570059067096803733432} a + \frac{92951870997262686930500994226385}{348065376183396673229677422637048}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 83098124.0446 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 34 conjugacy class representatives for t16n1281 |
| Character table for t16n1281 is not computed |
Intermediate fields
| \(\Q(\sqrt{13}) \), 4.0.2197.1, 8.0.17960556289.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }{,}\,{\href{/LocalNumberField/2.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ | R | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.8.7.2 | $x^{8} - 52$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 13.8.7.2 | $x^{8} - 52$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| $61$ | 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.2.1.2 | $x^{2} + 122$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 61.2.1.2 | $x^{2} + 122$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 61.4.2.2 | $x^{4} - 61 x^{2} + 7442$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 61.4.3.3 | $x^{4} + 122$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |