Normalized defining polynomial
\( x^{16} + 12 x^{14} - 54 x^{12} - 292 x^{10} - 3609 x^{8} - 11421 x^{6} + 169128 x^{4} + 702027 x^{2} + 531441 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(12357173778709817574713851369=11^{12}\cdot 13^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $56.98$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{3} a^{4} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{5} - \frac{1}{3} a$, $\frac{1}{9} a^{6} + \frac{1}{9} a^{4} - \frac{2}{9} a^{2}$, $\frac{1}{27} a^{7} - \frac{2}{27} a^{5} + \frac{1}{27} a^{3} - \frac{1}{3} a$, $\frac{1}{54} a^{8} - \frac{1}{27} a^{6} + \frac{1}{54} a^{4} - \frac{1}{6} a^{3} + \frac{1}{3} a^{2} + \frac{1}{6} a - \frac{1}{2}$, $\frac{1}{162} a^{9} - \frac{1}{54} a^{5} - \frac{1}{6} a^{4} + \frac{10}{81} a^{3} + \frac{1}{6} a^{2} - \frac{5}{18} a$, $\frac{1}{486} a^{10} + \frac{1}{162} a^{8} - \frac{1}{54} a^{6} - \frac{1}{6} a^{5} - \frac{31}{486} a^{4} + \frac{7}{54} a^{2} + \frac{1}{6} a - \frac{1}{2}$, $\frac{1}{1458} a^{11} + \frac{1}{486} a^{9} - \frac{1}{54} a^{7} - \frac{1}{18} a^{6} + \frac{167}{1458} a^{5} + \frac{1}{9} a^{4} - \frac{13}{162} a^{3} - \frac{1}{18} a^{2} - \frac{1}{18} a$, $\frac{1}{39366} a^{12} - \frac{4}{6561} a^{10} - \frac{1}{162} a^{8} - \frac{1}{54} a^{7} + \frac{826}{19683} a^{6} - \frac{7}{54} a^{5} + \frac{119}{4374} a^{4} + \frac{4}{27} a^{3} - \frac{26}{243} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{118098} a^{13} - \frac{4}{19683} a^{11} - \frac{1}{486} a^{9} - \frac{632}{59049} a^{7} - \frac{1}{18} a^{6} - \frac{2149}{13122} a^{5} - \frac{1}{18} a^{4} - \frac{7}{1458} a^{3} + \frac{1}{9} a^{2} + \frac{5}{18} a - \frac{1}{2}$, $\frac{1}{9924129234} a^{14} + \frac{24577}{3308043078} a^{12} + \frac{135203}{367560342} a^{10} - \frac{66881911}{9924129234} a^{8} - \frac{270169}{13613346} a^{6} - \frac{310960}{20420019} a^{4} - \frac{2467439}{13613346} a^{2} - \frac{1}{2} a - \frac{28895}{84033}$, $\frac{1}{29772387702} a^{15} + \frac{24577}{9924129234} a^{13} + \frac{135203}{1102681026} a^{11} - \frac{66881911}{29772387702} a^{9} + \frac{234029}{40840038} a^{7} - \frac{1823554}{61260057} a^{5} - \frac{1963241}{40840038} a^{3} - \frac{1}{2} a^{2} + \frac{111160}{252099} a$
Class group and class number
$C_{5}\times C_{5}\times C_{5}$, which has order $125$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 61187181.075 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_8: C_2$ |
| Character table for $C_8: C_2$ |
Intermediate fields
| \(\Q(\sqrt{-143}) \), \(\Q(\sqrt{13}) \), \(\Q(\sqrt{-11}) \), \(\Q(\sqrt{-11}, \sqrt{13})\), 4.4.265837.1, 4.0.2197.1, 8.0.70669310569.1, 8.4.111162825525037.1 x2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | R | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 11 | Data not computed | ||||||
| 13 | Data not computed | ||||||