Normalized defining polynomial
\( x^{16} - 8 x^{15} + 100 x^{14} - 560 x^{13} + 4184 x^{12} - 18188 x^{11} + 101298 x^{10} - 352160 x^{9} + 1574821 x^{8} - 4365228 x^{7} + 16182278 x^{6} - 34569744 x^{5} + 107501834 x^{4} - 161864696 x^{3} + 421058284 x^{2} - 345252216 x + 738052316 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(12255966294285746176000000000000=2^{32}\cdot 5^{12}\cdot 43^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $87.70$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1720=2^{3}\cdot 5\cdot 43\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1720}(1,·)$, $\chi_{1720}(1289,·)$, $\chi_{1720}(1547,·)$, $\chi_{1720}(1549,·)$, $\chi_{1720}(343,·)$, $\chi_{1720}(601,·)$, $\chi_{1720}(603,·)$, $\chi_{1720}(861,·)$, $\chi_{1720}(1203,·)$, $\chi_{1720}(429,·)$, $\chi_{1720}(687,·)$, $\chi_{1720}(689,·)$, $\chi_{1720}(947,·)$, $\chi_{1720}(1461,·)$, $\chi_{1720}(1463,·)$, $\chi_{1720}(87,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6}$, $\frac{1}{38} a^{11} + \frac{2}{19} a^{10} + \frac{7}{38} a^{9} + \frac{5}{38} a^{8} + \frac{13}{38} a^{7} - \frac{3}{19} a^{6} - \frac{15}{38} a^{5} + \frac{3}{38} a^{4} - \frac{1}{19} a^{3} + \frac{3}{19} a^{2} - \frac{2}{19} a - \frac{3}{19}$, $\frac{1}{38} a^{12} - \frac{9}{38} a^{10} - \frac{2}{19} a^{9} - \frac{7}{38} a^{8} + \frac{9}{19} a^{7} + \frac{9}{38} a^{6} + \frac{3}{19} a^{5} - \frac{7}{19} a^{4} + \frac{7}{19} a^{3} + \frac{5}{19} a^{2} + \frac{5}{19} a - \frac{7}{19}$, $\frac{1}{38} a^{13} - \frac{3}{19} a^{10} - \frac{1}{38} a^{9} + \frac{3}{19} a^{8} + \frac{6}{19} a^{7} - \frac{5}{19} a^{6} - \frac{8}{19} a^{5} - \frac{8}{19} a^{4} - \frac{4}{19} a^{3} - \frac{6}{19} a^{2} - \frac{6}{19} a - \frac{8}{19}$, $\frac{1}{733789229840934542} a^{14} - \frac{7}{733789229840934542} a^{13} + \frac{56439373306182}{19310242890550909} a^{12} + \frac{3221032888370752}{366894614920467271} a^{11} + \frac{144459234088059261}{733789229840934542} a^{10} - \frac{82961322185502383}{733789229840934542} a^{9} + \frac{17467195758858364}{366894614920467271} a^{8} + \frac{98585087949846654}{366894614920467271} a^{7} + \frac{24420775235517867}{366894614920467271} a^{6} + \frac{48863741421159044}{366894614920467271} a^{5} - \frac{53227414643409284}{366894614920467271} a^{4} + \frac{95881377585451035}{366894614920467271} a^{3} + \frac{163909236748122928}{366894614920467271} a^{2} + \frac{51813735275759471}{366894614920467271} a + \frac{170300190780741743}{366894614920467271}$, $\frac{1}{253288632567263944273018} a^{15} + \frac{86291}{126644316283631972136509} a^{14} - \frac{444635508101640803841}{253288632567263944273018} a^{13} + \frac{1630141422495647353620}{126644316283631972136509} a^{12} + \frac{55657105200617569911}{11513119662148361103319} a^{11} - \frac{39139799635246743336743}{253288632567263944273018} a^{10} - \frac{1366362806701240060947}{23026239324296722206638} a^{9} - \frac{35429875332921039026}{11513119662148361103319} a^{8} + \frac{4715866384030971328149}{253288632567263944273018} a^{7} - \frac{63227899299886864803781}{253288632567263944273018} a^{6} + \frac{1856009899528339170233}{126644316283631972136509} a^{5} - \frac{17317971596453438897868}{126644316283631972136509} a^{4} + \frac{25026744710800563315355}{126644316283631972136509} a^{3} + \frac{58315425947276309178704}{126644316283631972136509} a^{2} - \frac{33283790860298681562680}{126644316283631972136509} a + \frac{1206032816588093041708}{3088885763015413954549}$
Class group and class number
$C_{3}\times C_{30}\times C_{2100}$, which has order $189000$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7114.135357253273 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_4$ (as 16T2):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4\times C_2^2$ |
| Character table for $C_4\times C_2^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{16}$ | R | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.16.3 | $x^{8} + 2 x^{6} + 6 x^{4} + 4 x^{2} + 8 x + 28$ | $4$ | $2$ | $16$ | $C_4\times C_2$ | $[2, 3]^{2}$ |
| 2.8.16.3 | $x^{8} + 2 x^{6} + 6 x^{4} + 4 x^{2} + 8 x + 28$ | $4$ | $2$ | $16$ | $C_4\times C_2$ | $[2, 3]^{2}$ | |
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $43$ | 43.8.4.1 | $x^{8} + 73960 x^{4} - 79507 x^{2} + 1367520400$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 43.8.4.1 | $x^{8} + 73960 x^{4} - 79507 x^{2} + 1367520400$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |