Normalized defining polynomial
\( x^{16} - 8 x^{15} + 204 x^{14} - 1288 x^{13} + 18070 x^{12} - 92040 x^{11} + 917820 x^{10} - 3775144 x^{9} + 29390151 x^{8} - 95871272 x^{7} + 609155508 x^{6} - 1506813672 x^{5} + 7990422842 x^{4} - 13574268328 x^{3} + 60672375788 x^{2} - 54121458632 x + 204097777726 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(12251765391792386665453977600000000=2^{48}\cdot 3^{8}\cdot 5^{8}\cdot 19^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $135.06$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4560=2^{4}\cdot 3\cdot 5\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4560}(1,·)$, $\chi_{4560}(1331,·)$, $\chi_{4560}(4559,·)$, $\chi_{4560}(4369,·)$, $\chi_{4560}(3419,·)$, $\chi_{4560}(3421,·)$, $\chi_{4560}(3611,·)$, $\chi_{4560}(2471,·)$, $\chi_{4560}(2089,·)$, $\chi_{4560}(2279,·)$, $\chi_{4560}(3229,·)$, $\chi_{4560}(1139,·)$, $\chi_{4560}(1141,·)$, $\chi_{4560}(2281,·)$, $\chi_{4560}(191,·)$, $\chi_{4560}(949,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{23} a^{11} + \frac{6}{23} a^{10} + \frac{6}{23} a^{9} - \frac{3}{23} a^{8} - \frac{4}{23} a^{7} + \frac{1}{23} a^{6} - \frac{3}{23} a^{5} - \frac{9}{23} a^{4} - \frac{7}{23} a^{3} + \frac{8}{23} a^{2} - \frac{8}{23} a + \frac{6}{23}$, $\frac{1}{23} a^{12} - \frac{7}{23} a^{10} + \frac{7}{23} a^{9} - \frac{9}{23} a^{8} + \frac{2}{23} a^{7} - \frac{9}{23} a^{6} + \frac{9}{23} a^{5} + \frac{1}{23} a^{4} + \frac{4}{23} a^{3} - \frac{10}{23} a^{2} + \frac{8}{23} a + \frac{10}{23}$, $\frac{1}{23} a^{13} + \frac{3}{23} a^{10} + \frac{10}{23} a^{9} + \frac{4}{23} a^{8} + \frac{9}{23} a^{7} - \frac{7}{23} a^{6} + \frac{3}{23} a^{5} + \frac{10}{23} a^{4} + \frac{10}{23} a^{3} - \frac{5}{23} a^{2} - \frac{4}{23}$, $\frac{1}{38172124832866311923743} a^{14} - \frac{7}{38172124832866311923743} a^{13} - \frac{3772257284175616109}{537635561026286083433} a^{12} - \frac{52675998370157621116}{38172124832866311923743} a^{11} + \frac{925016731174271059896}{2245419107815665407279} a^{10} - \frac{416261164496496313910}{38172124832866311923743} a^{9} - \frac{11469461482946390074863}{38172124832866311923743} a^{8} - \frac{5313066309034238325590}{38172124832866311923743} a^{7} + \frac{212680523937275429124}{2245419107815665407279} a^{6} + \frac{3758746529575987425605}{38172124832866311923743} a^{5} - \frac{14107996509730451624447}{38172124832866311923743} a^{4} + \frac{3018381636153011202403}{38172124832866311923743} a^{3} + \frac{14749382411043366855277}{38172124832866311923743} a^{2} + \frac{10675819035233187910738}{38172124832866311923743} a - \frac{10246277994358326113958}{38172124832866311923743}$, $\frac{1}{185669482391935571261269418201} a^{15} + \frac{2431996}{185669482391935571261269418201} a^{14} + \frac{2457995790983674670608727906}{185669482391935571261269418201} a^{13} - \frac{483164406665551482240419547}{185669482391935571261269418201} a^{12} + \frac{143282238311372282403661915}{10921734258349151250662906953} a^{11} - \frac{52379157090131964151752458663}{185669482391935571261269418201} a^{10} + \frac{67298649107235524480330331107}{185669482391935571261269418201} a^{9} - \frac{32256236481690874985308578473}{185669482391935571261269418201} a^{8} + \frac{544076421763937679452848930}{10921734258349151250662906953} a^{7} + \frac{43388031794563122680212915682}{185669482391935571261269418201} a^{6} + \frac{24278567561198739301369492144}{185669482391935571261269418201} a^{5} + \frac{11929788760348834292711182717}{185669482391935571261269418201} a^{4} - \frac{58870510450735828547662737911}{185669482391935571261269418201} a^{3} - \frac{66640464237262551204928394396}{185669482391935571261269418201} a^{2} - \frac{48188935313516938768099435810}{185669482391935571261269418201} a - \frac{14504332053930508855903169}{10921734258349151250662906953}$
Class group and class number
$C_{8}\times C_{16}\times C_{46400}$, which has order $5939200$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 11964.310642723332 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_4$ (as 16T2):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4\times C_2^2$ |
| Character table for $C_4\times C_2^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.24.9 | $x^{8} + 8 x^{7} + 14 x^{4} + 4 x^{2} + 8 x + 30$ | $8$ | $1$ | $24$ | $C_4\times C_2$ | $[2, 3, 4]$ |
| 2.8.24.9 | $x^{8} + 8 x^{7} + 14 x^{4} + 4 x^{2} + 8 x + 30$ | $8$ | $1$ | $24$ | $C_4\times C_2$ | $[2, 3, 4]$ | |
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $19$ | 19.8.4.1 | $x^{8} + 7220 x^{4} - 27436 x^{2} + 13032100$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 19.8.4.1 | $x^{8} + 7220 x^{4} - 27436 x^{2} + 13032100$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |