Normalized defining polynomial
\( x^{16} - 8 x^{15} + 324 x^{14} - 2128 x^{13} + 42490 x^{12} - 227640 x^{11} + 2888720 x^{10} - 12406664 x^{9} + 108025401 x^{8} - 360080432 x^{7} + 2140710428 x^{6} - 5211543192 x^{5} + 18830100752 x^{4} - 29370783528 x^{3} + 31429508788 x^{2} - 17556233312 x + 81433551601 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(12251765391792386665453977600000000=2^{48}\cdot 3^{8}\cdot 5^{8}\cdot 19^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $135.06$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4560=2^{4}\cdot 3\cdot 5\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4560}(1,·)$, $\chi_{4560}(2051,·)$, $\chi_{4560}(1861,·)$, $\chi_{4560}(3649,·)$, $\chi_{4560}(1559,·)$, $\chi_{4560}(1369,·)$, $\chi_{4560}(3419,·)$, $\chi_{4560}(3229,·)$, $\chi_{4560}(2471,·)$, $\chi_{4560}(2281,·)$, $\chi_{4560}(4331,·)$, $\chi_{4560}(4141,·)$, $\chi_{4560}(1139,·)$, $\chi_{4560}(949,·)$, $\chi_{4560}(191,·)$, $\chi_{4560}(3839,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{19} a^{4} - \frac{2}{19} a^{3} - \frac{1}{19} a^{2} + \frac{2}{19} a + \frac{1}{19}$, $\frac{1}{19} a^{5} - \frac{5}{19} a^{3} + \frac{5}{19} a + \frac{2}{19}$, $\frac{1}{19} a^{6} + \frac{9}{19} a^{3} - \frac{7}{19} a + \frac{5}{19}$, $\frac{1}{19} a^{7} - \frac{1}{19} a^{3} + \frac{2}{19} a^{2} + \frac{6}{19} a - \frac{9}{19}$, $\frac{1}{361} a^{8} - \frac{4}{361} a^{7} + \frac{2}{361} a^{6} + \frac{8}{361} a^{5} - \frac{5}{361} a^{4} - \frac{8}{361} a^{3} + \frac{2}{361} a^{2} + \frac{4}{361} a + \frac{1}{361}$, $\frac{1}{361} a^{9} + \frac{5}{361} a^{7} - \frac{3}{361} a^{6} + \frac{8}{361} a^{5} - \frac{9}{361} a^{4} - \frac{163}{361} a^{3} + \frac{31}{361} a^{2} - \frac{154}{361} a + \frac{80}{361}$, $\frac{1}{361} a^{10} - \frac{2}{361} a^{7} - \frac{2}{361} a^{6} + \frac{8}{361} a^{5} - \frac{5}{361} a^{4} - \frac{100}{361} a^{3} + \frac{26}{361} a^{2} + \frac{136}{361} a + \frac{52}{361}$, $\frac{1}{361} a^{11} + \frac{9}{361} a^{7} - \frac{7}{361} a^{6} - \frac{8}{361} a^{5} + \frac{4}{361} a^{4} + \frac{48}{361} a^{3} + \frac{64}{361} a^{2} + \frac{79}{361} a + \frac{173}{361}$, $\frac{1}{665323} a^{12} - \frac{6}{665323} a^{11} - \frac{314}{665323} a^{10} - \frac{218}{665323} a^{9} - \frac{277}{665323} a^{8} + \frac{17094}{665323} a^{7} - \frac{9592}{665323} a^{6} - \frac{2046}{665323} a^{5} + \frac{10287}{665323} a^{4} - \frac{188490}{665323} a^{3} - \frac{248796}{665323} a^{2} - \frac{174775}{665323} a - \frac{271015}{665323}$, $\frac{1}{665323} a^{13} - \frac{350}{665323} a^{11} - \frac{259}{665323} a^{10} + \frac{258}{665323} a^{9} + \frac{688}{665323} a^{8} + \frac{17409}{665323} a^{7} + \frac{6750}{665323} a^{6} + \frac{14598}{665323} a^{5} - \frac{464}{35017} a^{4} + \frac{4357}{665323} a^{3} + \frac{53811}{665323} a^{2} - \frac{326288}{665323} a + \frac{3122}{665323}$, $\frac{1}{9077724187758515309363} a^{14} - \frac{1}{1296817741108359329909} a^{13} + \frac{5179184791310604}{9077724187758515309363} a^{12} - \frac{31075108747863533}{9077724187758515309363} a^{11} - \frac{8248247541625030228}{9077724187758515309363} a^{10} - \frac{8766007891557837607}{9077724187758515309363} a^{9} + \frac{362678727585229386}{394683660337326752581} a^{8} - \frac{56550372929528182896}{9077724187758515309363} a^{7} - \frac{26091059681678997695}{1296817741108359329909} a^{6} - \frac{148117166392355287626}{9077724187758515309363} a^{5} + \frac{19358907393865746260}{9077724187758515309363} a^{4} - \frac{4035669608530609470335}{9077724187758515309363} a^{3} + \frac{1546765574053975989635}{9077724187758515309363} a^{2} + \frac{129165242147726509435}{1296817741108359329909} a - \frac{4004051800418262192171}{9077724187758515309363}$, $\frac{1}{648556924345228783014117720803} a^{15} + \frac{35722433}{648556924345228783014117720803} a^{14} + \frac{215434282453162137233656}{648556924345228783014117720803} a^{13} - \frac{240509619287901533309870}{648556924345228783014117720803} a^{12} - \frac{167400388534328500380174733}{648556924345228783014117720803} a^{11} - \frac{601181198796293573804961934}{648556924345228783014117720803} a^{10} - \frac{337598307593781446118122217}{648556924345228783014117720803} a^{9} + \frac{60253413561322638279946880}{648556924345228783014117720803} a^{8} - \frac{6993446185169942379545863818}{648556924345228783014117720803} a^{7} + \frac{9576551772671418166713356735}{648556924345228783014117720803} a^{6} - \frac{22959899191707768379584545}{8209581320825680797647059757} a^{5} + \frac{75874781262105082204308016}{4028303877920675670895141123} a^{4} + \frac{228501733677301823793645166073}{648556924345228783014117720803} a^{3} - \frac{4445558599016602213017364132}{648556924345228783014117720803} a^{2} - \frac{7888873159340989838227741898}{648556924345228783014117720803} a - \frac{18237340498025131754045048649}{648556924345228783014117720803}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{10}\times C_{18850}$, which has order $1508000$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15197.42445606848 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_4$ (as 16T2):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4\times C_2^2$ |
| Character table for $C_4\times C_2^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $19$ | 19.4.2.2 | $x^{4} - 19 x^{2} + 722$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 19.4.2.2 | $x^{4} - 19 x^{2} + 722$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.2 | $x^{4} - 19 x^{2} + 722$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.2 | $x^{4} - 19 x^{2} + 722$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |