Normalized defining polynomial
\( x^{16} - 8 x^{15} + 244 x^{14} - 1568 x^{13} + 24010 x^{12} - 124040 x^{11} + 1221920 x^{10} - 5008984 x^{9} + 34483221 x^{8} - 109181072 x^{7} + 555347828 x^{6} - 1303648472 x^{5} + 5479602212 x^{4} - 8904466088 x^{3} + 31536986508 x^{2} - 27285235712 x + 75639875521 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(12251765391792386665453977600000000=2^{48}\cdot 3^{8}\cdot 5^{8}\cdot 19^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $135.06$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4560=2^{4}\cdot 3\cdot 5\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4560}(1,·)$, $\chi_{4560}(2051,·)$, $\chi_{4560}(3649,·)$, $\chi_{4560}(2509,·)$, $\chi_{4560}(911,·)$, $\chi_{4560}(4559,·)$, $\chi_{4560}(1369,·)$, $\chi_{4560}(3419,·)$, $\chi_{4560}(3421,·)$, $\chi_{4560}(229,·)$, $\chi_{4560}(2279,·)$, $\chi_{4560}(2281,·)$, $\chi_{4560}(4331,·)$, $\chi_{4560}(1139,·)$, $\chi_{4560}(1141,·)$, $\chi_{4560}(3191,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{29} a^{8} - \frac{4}{29} a^{7} - \frac{2}{29} a^{6} - \frac{9}{29} a^{5} - \frac{10}{29} a^{4} + \frac{11}{29} a^{3} - \frac{14}{29} a^{2} - \frac{2}{29} a + \frac{7}{29}$, $\frac{1}{29} a^{9} + \frac{11}{29} a^{7} + \frac{12}{29} a^{6} + \frac{12}{29} a^{5} + \frac{1}{29} a^{3} - \frac{1}{29} a - \frac{1}{29}$, $\frac{1}{13021} a^{10} - \frac{5}{13021} a^{9} + \frac{173}{13021} a^{8} - \frac{662}{13021} a^{7} + \frac{6443}{13021} a^{6} - \frac{4012}{13021} a^{5} + \frac{3456}{13021} a^{4} - \frac{5328}{13021} a^{3} - \frac{2240}{13021} a^{2} + \frac{2174}{13021} a - \frac{2486}{13021}$, $\frac{1}{13021} a^{11} + \frac{148}{13021} a^{9} + \frac{7}{449} a^{8} + \frac{3133}{13021} a^{7} + \frac{2161}{13021} a^{6} - \frac{3583}{13021} a^{5} - \frac{1069}{13021} a^{4} - \frac{2838}{13021} a^{3} + \frac{3995}{13021} a^{2} - \frac{4637}{13021} a + \frac{591}{13021}$, $\frac{1}{299483} a^{12} - \frac{6}{299483} a^{11} - \frac{1}{299483} a^{10} + \frac{60}{299483} a^{9} + \frac{1731}{299483} a^{8} - \frac{7350}{299483} a^{7} - \frac{12104}{299483} a^{6} + \frac{62355}{299483} a^{5} + \frac{53025}{299483} a^{4} + \frac{80780}{299483} a^{3} + \frac{11956}{299483} a^{2} + \frac{109036}{299483} a + \frac{142368}{299483}$, $\frac{1}{299483} a^{13} + \frac{9}{299483} a^{11} + \frac{8}{299483} a^{10} - \frac{1198}{299483} a^{9} + \frac{192}{13021} a^{8} + \frac{4769}{299483} a^{7} - \frac{31682}{299483} a^{6} + \frac{23482}{299483} a^{5} - \frac{108703}{299483} a^{4} + \frac{1883}{299483} a^{3} - \frac{131384}{299483} a^{2} - \frac{105361}{299483} a + \frac{107628}{299483}$, $\frac{1}{845017130875590609923} a^{14} - \frac{1}{120716732982227229989} a^{13} - \frac{604550105925760}{845017130875590609923} a^{12} + \frac{3627300635554651}{845017130875590609923} a^{11} - \frac{457955010534526}{29138521754330710687} a^{10} + \frac{33153220701588469}{845017130875590609923} a^{9} - \frac{7703519024899150755}{845017130875590609923} a^{8} + \frac{30655057082378173653}{845017130875590609923} a^{7} + \frac{351949828761666900689}{845017130875590609923} a^{6} - \frac{318025711977778129821}{845017130875590609923} a^{5} - \frac{155413844764406541249}{845017130875590609923} a^{4} - \frac{250101088034143937975}{845017130875590609923} a^{3} - \frac{8390302665512254413}{36739875255460461301} a^{2} - \frac{303423786887551789066}{845017130875590609923} a - \frac{37336403704453009279}{120716732982227229989}$, $\frac{1}{56855930674738959331903360403} a^{15} + \frac{33641873}{56855930674738959331903360403} a^{14} - \frac{37459606094260311549400}{56855930674738959331903360403} a^{13} + \frac{164050732609730198910}{280078476230241178974893401} a^{12} + \frac{181111298688135030612962}{8122275810676994190271908629} a^{11} + \frac{8661501696665877973452}{353142426551173660446604723} a^{10} + \frac{132657196472960272719003434}{8122275810676994190271908629} a^{9} + \frac{770181569053305691903945610}{56855930674738959331903360403} a^{8} + \frac{593884925314405764119380611}{56855930674738959331903360403} a^{7} - \frac{97616932131685388123695106}{280078476230241178974893401} a^{6} + \frac{91313989369162379773013142}{8122275810676994190271908629} a^{5} + \frac{229133579296812334829810809}{8122275810676994190271908629} a^{4} + \frac{1345437877109926181007865822}{8122275810676994190271908629} a^{3} + \frac{789401306995059809225692358}{8122275810676994190271908629} a^{2} + \frac{22563607640199794406259360338}{56855930674738959331903360403} a - \frac{442710137982858654522447}{1071964604814173708627677}$
Class group and class number
$C_{2}\times C_{16}\times C_{16}\times C_{6032}$, which has order $3088384$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 12198.951274811623 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_4$ (as 16T2):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4\times C_2^2$ |
| Character table for $C_4\times C_2^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $19$ | 19.8.4.1 | $x^{8} + 7220 x^{4} - 27436 x^{2} + 13032100$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 19.8.4.1 | $x^{8} + 7220 x^{4} - 27436 x^{2} + 13032100$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |