Normalized defining polynomial
\( x^{16} - 2 x^{15} + 48 x^{14} + 1407 x^{13} - 4637 x^{12} - 125221 x^{11} - 576572 x^{10} - 622524 x^{9} + 21634972 x^{8} + 250742109 x^{7} + 1385098477 x^{6} + 2042810745 x^{5} - 7327431717 x^{4} - 35655384702 x^{3} + 2592547372 x^{2} + 47330809200 x + 227541079872 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1224893067851117776958601403290228616174361=31^{12}\cdot 41^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $427.08$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $31, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{8} + \frac{1}{4} a^{7} + \frac{1}{4} a^{6} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} + \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{9} - \frac{1}{4} a^{7} + \frac{1}{4} a^{6} - \frac{1}{4} a^{5} + \frac{1}{4} a^{4} + \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{208} a^{13} - \frac{23}{208} a^{12} + \frac{1}{13} a^{11} - \frac{3}{26} a^{10} - \frac{25}{208} a^{9} + \frac{1}{26} a^{8} + \frac{3}{16} a^{7} - \frac{75}{208} a^{6} + \frac{11}{104} a^{5} + \frac{7}{52} a^{4} + \frac{75}{208} a^{3} + \frac{47}{104} a^{2} - \frac{11}{52} a + \frac{1}{13}$, $\frac{1}{208} a^{14} + \frac{7}{208} a^{12} - \frac{5}{52} a^{11} - \frac{5}{208} a^{10} + \frac{5}{208} a^{9} + \frac{15}{208} a^{8} + \frac{47}{104} a^{7} - \frac{7}{16} a^{6} - \frac{45}{104} a^{5} - \frac{61}{208} a^{4} - \frac{53}{208} a^{3} + \frac{45}{104} a^{2} + \frac{11}{52} a - \frac{3}{13}$, $\frac{1}{4403897020962801250807697039392279183417242259647356896118590877783518548197808} a^{15} - \frac{958501273419685530071710220278155516925662360995221043712926468320201492823}{4403897020962801250807697039392279183417242259647356896118590877783518548197808} a^{14} - \frac{184394323748077448209465154885924402193419834410771536502279662926419866339}{733982836827133541801282839898713197236207043274559482686431812963919758032968} a^{13} - \frac{27478790130675917718851011914223707252819378039464441026192435774067605172587}{733982836827133541801282839898713197236207043274559482686431812963919758032968} a^{12} - \frac{224504746647061310072631367678213700780598139410662136728526133521381216341969}{4403897020962801250807697039392279183417242259647356896118590877783518548197808} a^{11} - \frac{58140476686015526094947882712885070849358788033600521825676210396325921219453}{550487127620350156350962129924034897927155282455919612014823859722939818524726} a^{10} - \frac{340591645470667406912958982264364648105311637729175099944309665405510750028351}{4403897020962801250807697039392279183417242259647356896118590877783518548197808} a^{9} - \frac{353369248081386397162724721115607461084569886766320648174791152252390385923897}{1467965673654267083602565679797426394472414086549118965372863625927839516065936} a^{8} + \frac{73131099097552689256844744235308875226861874895405434352982953351158656835413}{550487127620350156350962129924034897927155282455919612014823859722939818524726} a^{7} + \frac{456532838798060872481361764020224785849161153747465811457367967128590037687}{3321189306910106523987705157912729399258855399432395849259872456850315647208} a^{6} - \frac{58709096240406507676525679887170258052138989170505678158460620363319206426521}{259052765938988308871041002317192893142190721155726876242270051634324620482224} a^{5} + \frac{1039205976817421098597682256454689587803583894681875450092615986021072729153}{4343093709036293146753152898808953829800041676180825341339833212804258923272} a^{4} - \frac{189466912728605812167400773576737517370168420443478686729081848469158135893235}{733982836827133541801282839898713197236207043274559482686431812963919758032968} a^{3} + \frac{38590861544433607919625408636907165138330446890012418950873253648844135417143}{366991418413566770900641419949356598618103521637279741343215906481959879016484} a^{2} - \frac{255810397734750753694133717420838888205781841846828327433454154486350676220957}{550487127620350156350962129924034897927155282455919612014823859722939818524726} a + \frac{26851837093982215573689829557656445071741029605718603587975941273987854811862}{91747854603391692725160354987339149654525880409319935335803976620489969754121}$
Class group and class number
$C_{8}\times C_{4160}$, which has order $33280$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 166813427270 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4.D_4:C_4$ (as 16T260):
| A solvable group of order 128 |
| The 32 conjugacy class representatives for $C_4.D_4:C_4$ |
| Character table for $C_4.D_4:C_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-1271}) \), 4.0.66233081.1, 8.0.179859661768855001.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | $16$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | R | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $31$ | 31.4.3.1 | $x^{4} + 217$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ |
| 31.4.3.1 | $x^{4} + 217$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 31.4.3.1 | $x^{4} + 217$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 31.4.3.1 | $x^{4} + 217$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 41 | Data not computed | ||||||