Normalized defining polynomial
\( x^{16} - 2 x^{15} + 9 x^{14} - 10 x^{13} + 32 x^{12} - 21 x^{11} + 64 x^{10} - 17 x^{9} + 81 x^{8} + \cdots + 1 \)
Invariants
Degree: | $16$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 8]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(122444006400000000\) \(\medspace = 2^{16}\cdot 3^{14}\cdot 5^{8}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(11.69\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{5/2}3^{7/8}5^{1/2}\approx 33.07814062698043$ | ||
Ramified primes: | \(2\), \(3\), \(5\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Aut(K/\Q) }$: | $4$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3}a^{8}-\frac{1}{3}a^{7}+\frac{1}{3}a^{6}-\frac{1}{3}a^{5}+\frac{1}{3}a^{4}-\frac{1}{3}a^{3}+\frac{1}{3}a^{2}-\frac{1}{3}a+\frac{1}{3}$, $\frac{1}{3}a^{9}+\frac{1}{3}$, $\frac{1}{3}a^{10}+\frac{1}{3}a$, $\frac{1}{3}a^{11}+\frac{1}{3}a^{2}$, $\frac{1}{3}a^{12}+\frac{1}{3}a^{3}$, $\frac{1}{3}a^{13}+\frac{1}{3}a^{4}$, $\frac{1}{33}a^{14}-\frac{5}{33}a^{13}+\frac{1}{11}a^{12}-\frac{2}{33}a^{11}-\frac{1}{11}a^{10}-\frac{1}{11}a^{9}+\frac{4}{33}a^{8}-\frac{10}{33}a^{7}+\frac{16}{33}a^{6}+\frac{3}{11}a^{5}+\frac{8}{33}a^{4}+\frac{5}{33}a^{3}-\frac{10}{33}a^{2}-\frac{4}{33}a+\frac{10}{33}$, $\frac{1}{1023}a^{15}+\frac{2}{341}a^{14}-\frac{43}{341}a^{13}-\frac{112}{1023}a^{12}-\frac{58}{1023}a^{11}-\frac{113}{1023}a^{10}+\frac{59}{1023}a^{9}-\frac{10}{1023}a^{8}+\frac{280}{1023}a^{7}+\frac{3}{341}a^{6}+\frac{7}{33}a^{5}+\frac{71}{1023}a^{4}+\frac{37}{341}a^{3}+\frac{304}{1023}a^{2}+\frac{197}{1023}a-\frac{37}{93}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $7$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( \frac{10}{33} a^{15} - \frac{35}{33} a^{14} + \frac{40}{11} a^{13} - \frac{76}{11} a^{12} + \frac{457}{33} a^{11} - \frac{212}{11} a^{10} + \frac{908}{33} a^{9} - \frac{325}{11} a^{8} + \frac{337}{11} a^{7} - \frac{88}{3} a^{6} + \frac{556}{33} a^{5} - \frac{156}{11} a^{4} + \frac{21}{11} a^{3} - \frac{47}{33} a^{2} - \frac{16}{11} a + \frac{29}{33} \) (order $6$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{41}{1023}a^{15}-\frac{188}{1023}a^{14}+\frac{632}{1023}a^{13}-\frac{487}{341}a^{12}+\frac{2923}{1023}a^{11}-\frac{5036}{1023}a^{10}+\frac{7472}{1023}a^{9}-\frac{9989}{1023}a^{8}+\frac{11387}{1023}a^{7}-\frac{4124}{341}a^{6}+\frac{116}{11}a^{5}-\frac{234}{31}a^{4}+\frac{5450}{1023}a^{3}-\frac{1951}{1023}a^{2}+\frac{202}{341}a+\frac{152}{341}$, $\frac{7}{1023}a^{15}+\frac{1}{93}a^{14}+\frac{25}{93}a^{13}-\frac{536}{1023}a^{12}+\frac{2384}{1023}a^{11}-\frac{2744}{1023}a^{10}+\frac{222}{31}a^{9}-\frac{5650}{1023}a^{8}+\frac{11818}{1023}a^{7}-\frac{1622}{341}a^{6}+\frac{105}{11}a^{5}-\frac{3161}{1023}a^{4}+\frac{281}{1023}a^{3}-\frac{290}{1023}a^{2}-\frac{2248}{1023}a+\frac{251}{1023}$, $\frac{424}{1023}a^{15}-\frac{742}{1023}a^{14}+\frac{1112}{341}a^{13}-\frac{2786}{1023}a^{12}+\frac{10283}{1023}a^{11}-\frac{3272}{1023}a^{10}+\frac{17483}{1023}a^{9}+\frac{3758}{1023}a^{8}+\frac{1721}{93}a^{7}+\frac{3752}{341}a^{6}+\frac{70}{11}a^{5}+\frac{8249}{1023}a^{4}-\frac{2443}{1023}a^{3}+\frac{2509}{1023}a^{2}-\frac{172}{1023}a-\frac{1169}{1023}$, $\frac{284}{1023}a^{15}-\frac{300}{341}a^{14}+\frac{3323}{1023}a^{13}-\frac{5861}{1023}a^{12}+\frac{1177}{93}a^{11}-\frac{16096}{1023}a^{10}+\frac{26614}{1023}a^{9}-\frac{23486}{1023}a^{8}+\frac{31904}{1023}a^{7}-\frac{6898}{341}a^{6}+\frac{61}{3}a^{5}-\frac{2496}{341}a^{4}+\frac{1735}{341}a^{3}+\frac{16}{31}a^{2}-\frac{131}{1023}a+\frac{569}{1023}$, $\frac{84}{341}a^{15}-\frac{116}{341}a^{14}+\frac{2026}{1023}a^{13}-\frac{1409}{1023}a^{12}+\frac{2506}{341}a^{11}-\frac{812}{341}a^{10}+\frac{17038}{1023}a^{9}-\frac{412}{1023}a^{8}+\frac{26416}{1023}a^{7}+\frac{3539}{1023}a^{6}+\frac{751}{33}a^{5}+\frac{663}{341}a^{4}+\frac{9806}{1023}a^{3}-\frac{613}{1023}a^{2}+\frac{478}{1023}a-\frac{150}{341}$, $\frac{10}{31}a^{15}-\frac{686}{1023}a^{14}+\frac{3155}{1023}a^{13}-\frac{3697}{1023}a^{12}+\frac{11767}{1023}a^{11}-\frac{8150}{1023}a^{10}+\frac{24740}{1023}a^{9}-\frac{7144}{1023}a^{8}+\frac{33469}{1023}a^{7}+\frac{893}{1023}a^{6}+\frac{854}{33}a^{5}+\frac{6535}{1023}a^{4}+\frac{3220}{341}a^{3}+\frac{1634}{341}a^{2}+\frac{995}{1023}a+\frac{664}{1023}$, $\frac{14}{33}a^{15}-\frac{38}{33}a^{14}+\frac{157}{33}a^{13}-\frac{251}{33}a^{12}+\frac{214}{11}a^{11}-\frac{710}{33}a^{10}+\frac{1423}{33}a^{9}-\frac{1057}{33}a^{8}+\frac{1906}{33}a^{7}-\frac{82}{3}a^{6}+\frac{1445}{33}a^{5}-\frac{115}{11}a^{4}+\frac{416}{33}a^{3}+\frac{20}{33}a^{2}-\frac{76}{33}a+\frac{15}{11}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 230.49973438 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 230.49973438 \cdot 1}{6\cdot\sqrt{122444006400000000}}\cr\approx \mathstrut & 0.26667933289 \end{aligned}\]
Galois group
$(C_4\times C_8):D_4$ (as 16T513):
A solvable group of order 256 |
The 46 conjugacy class representatives for $(C_4\times C_8):D_4$ |
Character table for $(C_4\times C_8):D_4$ |
Intermediate fields
\(\Q(\sqrt{5}) \), \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-3}, \sqrt{5})\), 8.0.7290000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 16 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | R | ${\href{/padicField/7.8.0.1}{8} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }^{4}$ | ${\href{/padicField/13.4.0.1}{4} }^{2}{,}\,{\href{/padicField/13.2.0.1}{2} }^{4}$ | ${\href{/padicField/17.8.0.1}{8} }^{2}$ | ${\href{/padicField/19.4.0.1}{4} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }^{4}$ | ${\href{/padicField/23.8.0.1}{8} }^{2}$ | ${\href{/padicField/29.8.0.1}{8} }^{2}$ | ${\href{/padicField/31.4.0.1}{4} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }^{2}{,}\,{\href{/padicField/31.1.0.1}{1} }^{4}$ | ${\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }^{4}$ | ${\href{/padicField/41.8.0.1}{8} }^{2}$ | ${\href{/padicField/43.8.0.1}{8} }^{2}$ | ${\href{/padicField/47.8.0.1}{8} }^{2}$ | ${\href{/padicField/53.8.0.1}{8} }^{2}$ | ${\href{/padicField/59.4.0.1}{4} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.8.16.38 | $x^{8} - 4 x^{5} + 20 x^{4} + 24 x^{3} + 88 x^{2} + 56 x + 124$ | $4$ | $2$ | $16$ | $C_8:C_2$ | $[2, 3, 3]^{2}$ |
2.8.0.1 | $x^{8} + x^{4} + x^{3} + x^{2} + 1$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
\(3\) | 3.16.14.3 | $x^{16} + 36$ | $8$ | $2$ | $14$ | 16T49 | $[\ ]_{8}^{4}$ |
\(5\) | 5.16.8.1 | $x^{16} + 160 x^{15} + 11240 x^{14} + 453600 x^{13} + 11536702 x^{12} + 190484240 x^{11} + 2020220586 x^{10} + 13041178608 x^{9} + 45239382035 x^{8} + 65384309200 x^{7} + 52374358166 x^{6} + 35488260768 x^{5} + 46408266743 x^{4} + 66345171264 x^{3} + 136057926318 x^{2} + 159173865296 x + 74196697609$ | $2$ | $8$ | $8$ | $C_8\times C_2$ | $[\ ]_{2}^{8}$ |