Normalized defining polynomial
\( x^{16} - 8 x^{15} + 30 x^{14} - 70 x^{13} + 132 x^{12} - 246 x^{11} - 4264 x^{10} + 22860 x^{9} + 17710 x^{8} - 209562 x^{7} + 71748 x^{6} + 615758 x^{5} - 590233 x^{4} - 136764 x^{3} + 1053996 x^{2} - 841088 x + 375808 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(12196812568090154832283098089233=37^{2}\cdot 73^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $87.68$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $37, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{8} a^{8} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{3}{8} a^{2} - \frac{1}{4} a$, $\frac{1}{8} a^{9} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{3}{8} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{16} a^{10} - \frac{1}{16} a^{9} - \frac{1}{16} a^{8} + \frac{1}{8} a^{7} - \frac{1}{4} a^{6} + \frac{3}{16} a^{4} - \frac{3}{16} a^{3} + \frac{1}{16} a^{2} + \frac{1}{8} a$, $\frac{1}{16} a^{11} - \frac{1}{16} a^{8} - \frac{1}{8} a^{7} + \frac{3}{16} a^{5} - \frac{1}{4} a^{4} + \frac{5}{16} a^{2} - \frac{1}{8} a$, $\frac{1}{64} a^{12} - \frac{1}{32} a^{11} - \frac{1}{32} a^{10} + \frac{1}{64} a^{9} - \frac{1}{16} a^{8} - \frac{1}{4} a^{7} + \frac{11}{64} a^{6} - \frac{3}{32} a^{5} + \frac{7}{32} a^{4} - \frac{21}{64} a^{3} + \frac{3}{16} a^{2} + \frac{3}{16} a$, $\frac{1}{64} a^{13} - \frac{1}{32} a^{11} + \frac{1}{64} a^{10} + \frac{1}{32} a^{9} + \frac{11}{64} a^{7} - \frac{1}{4} a^{6} - \frac{1}{32} a^{5} + \frac{3}{64} a^{4} - \frac{1}{32} a^{3} + \frac{3}{16} a^{2} - \frac{1}{8} a$, $\frac{1}{22399474766822144} a^{14} - \frac{7}{22399474766822144} a^{13} + \frac{146075194732143}{22399474766822144} a^{12} + \frac{523516004533617}{22399474766822144} a^{11} - \frac{449309946974555}{22399474766822144} a^{10} - \frac{919051938271433}{22399474766822144} a^{9} - \frac{969962029458329}{22399474766822144} a^{8} + \frac{2553131240994531}{22399474766822144} a^{7} - \frac{4523422188962983}{22399474766822144} a^{6} + \frac{1455462028259351}{22399474766822144} a^{5} + \frac{5483972120247819}{22399474766822144} a^{4} - \frac{8730881479630191}{22399474766822144} a^{3} - \frac{69482210976051}{174995896615798} a^{2} - \frac{2018820191839395}{5599868691705536} a - \frac{174122605716647}{349991793231596}$, $\frac{1}{7772617744087283968} a^{15} + \frac{83}{3886308872043641984} a^{14} + \frac{1086494178377521}{1943154436021820992} a^{13} - \frac{726200587949129}{1943154436021820992} a^{12} + \frac{94758314057557225}{3886308872043641984} a^{11} + \frac{6793401082892129}{971577218010910496} a^{10} + \frac{180760912282330901}{3886308872043641984} a^{9} + \frac{79071058545349159}{3886308872043641984} a^{8} - \frac{36462986660015191}{485788609005455248} a^{7} - \frac{243398015734928627}{1943154436021820992} a^{6} + \frac{182538187662223555}{3886308872043641984} a^{5} + \frac{15613279941908449}{485788609005455248} a^{4} - \frac{895650843442253499}{7772617744087283968} a^{3} + \frac{191864094056570457}{1943154436021820992} a^{2} - \frac{738432794607363671}{1943154436021820992} a + \frac{55974770345992685}{121447152251363812}$
Class group and class number
$C_{89}$, which has order $89$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4232340654.47 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 32 conjugacy class representatives for t16n841 |
| Character table for t16n841 is not computed |
Intermediate fields
| \(\Q(\sqrt{73}) \), 4.4.389017.1, 8.0.11047398519097.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | $16$ | $16$ | R | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | $16$ | $16$ | $16$ | $16$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $37$ | $\Q_{37}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{37}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{37}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{37}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 37.2.1.1 | $x^{2} - 37$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 37.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 37.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 37.2.1.1 | $x^{2} - 37$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 37.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 37.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 73 | Data not computed | ||||||