Normalized defining polynomial
\( x^{16} - 6 x^{15} - 4 x^{14} + 76 x^{13} + 61 x^{12} - 892 x^{11} + 2683 x^{10} - 1492 x^{9} + 7277 x^{8} - 27084 x^{7} + 144027 x^{6} - 247816 x^{5} + 668076 x^{4} - 1011818 x^{3} + 2445759 x^{2} - 2485508 x + 2784016 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1219275257885198999941650390625=5^{12}\cdot 11^{8}\cdot 13^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $75.92$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 11, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(715=5\cdot 11\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{715}(1,·)$, $\chi_{715}(131,·)$, $\chi_{715}(584,·)$, $\chi_{715}(714,·)$, $\chi_{715}(463,·)$, $\chi_{715}(144,·)$, $\chi_{715}(593,·)$, $\chi_{715}(274,·)$, $\chi_{715}(408,·)$, $\chi_{715}(538,·)$, $\chi_{715}(177,·)$, $\chi_{715}(307,·)$, $\chi_{715}(441,·)$, $\chi_{715}(122,·)$, $\chi_{715}(571,·)$, $\chi_{715}(252,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{7} - \frac{1}{4} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{3}$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{9} - \frac{1}{8} a^{8} - \frac{1}{8} a^{4} - \frac{3}{8} a^{3} - \frac{3}{8} a^{2} - \frac{1}{2} a$, $\frac{1}{56} a^{11} - \frac{3}{56} a^{10} - \frac{3}{56} a^{9} - \frac{1}{14} a^{8} + \frac{1}{14} a^{7} + \frac{3}{56} a^{5} + \frac{3}{56} a^{4} - \frac{25}{56} a^{3} + \frac{3}{14} a^{2} + \frac{2}{7}$, $\frac{1}{224} a^{12} + \frac{9}{224} a^{10} + \frac{1}{28} a^{9} + \frac{13}{224} a^{8} - \frac{1}{14} a^{7} - \frac{25}{224} a^{6} + \frac{3}{56} a^{5} + \frac{47}{224} a^{4} + \frac{3}{8} a^{3} - \frac{69}{224} a^{2} + \frac{11}{56} a + \frac{3}{14}$, $\frac{1}{224} a^{13} + \frac{1}{224} a^{11} + \frac{1}{56} a^{10} + \frac{9}{224} a^{9} - \frac{3}{56} a^{8} - \frac{1}{224} a^{7} + \frac{3}{56} a^{6} + \frac{23}{224} a^{5} - \frac{3}{28} a^{4} + \frac{47}{224} a^{3} + \frac{11}{28} a^{2} - \frac{1}{28} a + \frac{3}{7}$, $\frac{1}{896} a^{14} + \frac{1}{896} a^{13} - \frac{1}{128} a^{11} + \frac{3}{224} a^{10} - \frac{3}{896} a^{9} - \frac{31}{448} a^{8} - \frac{11}{128} a^{7} + \frac{43}{224} a^{6} - \frac{23}{128} a^{5} - \frac{9}{56} a^{4} - \frac{293}{896} a^{3} - \frac{359}{896} a^{2} - \frac{31}{224} a + \frac{19}{56}$, $\frac{1}{57420362145900500412944470107776} a^{15} + \frac{16433854530788333001022115269}{57420362145900500412944470107776} a^{14} - \frac{8881596059671291614404277359}{7177545268237562551618058763472} a^{13} + \frac{121042418716030503328789471209}{57420362145900500412944470107776} a^{12} - \frac{812119425396751426955609519}{14355090536475125103236117526944} a^{11} + \frac{505047336824637849308665979805}{57420362145900500412944470107776} a^{10} - \frac{54843603858840931197358741005}{4101454438992892886638890721984} a^{9} + \frac{7110645028779603360626574629307}{57420362145900500412944470107776} a^{8} - \frac{1370598082234164211891726196259}{14355090536475125103236117526944} a^{7} + \frac{8456909507671142858204030705935}{57420362145900500412944470107776} a^{6} + \frac{573598951771745917749099766647}{7177545268237562551618058763472} a^{5} + \frac{1035362747351543563614296203419}{57420362145900500412944470107776} a^{4} + \frac{4499574045200848426512432746257}{57420362145900500412944470107776} a^{3} + \frac{1953905634666657785319142533187}{7177545268237562551618058763472} a^{2} + \frac{843536667239426206221790346415}{1794386317059390637904514690868} a - \frac{331705939032906280081682932399}{897193158529695318952257345434}$
Class group and class number
$C_{10}\times C_{1160}$, which has order $11600$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 136143.5905281255 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_4$ (as 16T2):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4\times C_2^2$ |
| Character table for $C_4\times C_2^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | R | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $11$ | 11.8.4.1 | $x^{8} + 484 x^{4} - 1331 x^{2} + 58564$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 11.8.4.1 | $x^{8} + 484 x^{4} - 1331 x^{2} + 58564$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $13$ | 13.8.6.2 | $x^{8} + 39 x^{4} + 676$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 13.8.6.2 | $x^{8} + 39 x^{4} + 676$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |