Normalized defining polynomial
\( x^{16} - 4 x^{15} + 52 x^{14} - 240 x^{13} + 1440 x^{12} - 5716 x^{11} + 22796 x^{10} - 69300 x^{9} + 204159 x^{8} - 453580 x^{7} + 997404 x^{6} - 1441988 x^{5} + 2287980 x^{4} - 1475320 x^{3} + 2075448 x^{2} - 2010692 x + 4536281 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(12136551081312256000000000000=2^{44}\cdot 5^{12}\cdot 41^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $56.92$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{231} a^{14} + \frac{101}{231} a^{13} - \frac{25}{77} a^{12} - \frac{10}{21} a^{11} - \frac{27}{77} a^{10} - \frac{20}{231} a^{9} - \frac{5}{21} a^{8} + \frac{41}{231} a^{7} - \frac{74}{231} a^{6} - \frac{64}{231} a^{4} - \frac{107}{231} a^{3} + \frac{94}{231} a^{2} + \frac{37}{231} a + \frac{71}{231}$, $\frac{1}{16235942263811612957285665780309881697211976951} a^{15} - \frac{18577841996058096442560969043725551210727586}{16235942263811612957285665780309881697211976951} a^{14} - \frac{2435048861796597215731433733147195759322359108}{5411980754603870985761888593436627232403992317} a^{13} - \frac{693938192997291104126823153652814563852760834}{2319420323401658993897952254329983099601710993} a^{12} + \frac{1234727218640878745125570045578099664957047476}{5411980754603870985761888593436627232403992317} a^{11} - \frac{2814193095032706686528614799550845415215892959}{16235942263811612957285665780309881697211976951} a^{10} + \frac{787170666129843547271959791895886800794773051}{2319420323401658993897952254329983099601710993} a^{9} + \frac{107697105028396631401626034256471254708057504}{395998591800283242860625994641704431639316511} a^{8} + \frac{1064482353409016397112733679678222466592118172}{16235942263811612957285665780309881697211976951} a^{7} + \frac{2006349745164235412401561088160338348939823514}{5411980754603870985761888593436627232403992317} a^{6} - \frac{19436116570195085625408262224374835211658323}{16235942263811612957285665780309881697211976951} a^{5} + \frac{5520470943072041135912405334489576784963589899}{16235942263811612957285665780309881697211976951} a^{4} - \frac{1886895777337516192613613412359887817574167020}{16235942263811612957285665780309881697211976951} a^{3} - \frac{1509533132508749642636344736754153935366916569}{16235942263811612957285665780309881697211976951} a^{2} - \frac{490638201024942418646422863530134069246483436}{1475994751255601177935060525482716517928361541} a + \frac{50316315534523020138036285812405603095865232}{131999530600094414286875331547234810546438837}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{382}$, which has order $3056$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7114.13535725 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4.C_2^3$ (as 16T268):
| A solvable group of order 128 |
| The 29 conjugacy class representatives for $C_2^4.C_2^3$ |
| Character table for $C_2^4.C_2^3$ is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{10}) \), 4.4.8000.1, \(\Q(\zeta_{20})^+\), \(\Q(\sqrt{2}, \sqrt{5})\), \(\Q(\zeta_{40})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 41 | Data not computed | ||||||