Normalized defining polynomial
\( x^{16} - x^{15} + x^{14} + 2 x^{13} - 9 x^{12} + 12 x^{11} - 20 x^{9} + 57 x^{8} - 40 x^{7} + 96 x^{5} - 144 x^{4} + 64 x^{3} + 64 x^{2} - 128 x + 256 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(121333322988525390625=5^{12}\cdot 89^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $18.00$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{9} + \frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{1}{4} a^{6} + \frac{1}{4} a^{2}$, $\frac{1}{8} a^{11} - \frac{1}{8} a^{10} + \frac{1}{8} a^{9} + \frac{1}{4} a^{8} - \frac{1}{8} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} + \frac{1}{8} a^{3}$, $\frac{1}{16} a^{12} - \frac{1}{16} a^{11} + \frac{1}{16} a^{10} + \frac{1}{8} a^{9} + \frac{7}{16} a^{8} - \frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{7}{16} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{32} a^{13} - \frac{1}{32} a^{12} + \frac{1}{32} a^{11} + \frac{1}{16} a^{10} + \frac{7}{32} a^{9} - \frac{1}{8} a^{8} - \frac{1}{2} a^{7} + \frac{3}{8} a^{6} + \frac{9}{32} a^{5} - \frac{1}{4} a^{4}$, $\frac{1}{64} a^{14} - \frac{1}{64} a^{13} + \frac{1}{64} a^{12} + \frac{1}{32} a^{11} + \frac{7}{64} a^{10} - \frac{1}{16} a^{9} + \frac{1}{4} a^{8} + \frac{3}{16} a^{7} - \frac{23}{64} a^{6} + \frac{3}{8} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{3968} a^{15} - \frac{9}{3968} a^{14} - \frac{51}{3968} a^{13} + \frac{19}{1984} a^{12} + \frac{59}{3968} a^{11} - \frac{53}{992} a^{10} + \frac{207}{992} a^{9} + \frac{323}{992} a^{8} + \frac{1625}{3968} a^{7} + \frac{11}{124} a^{6} + \frac{9}{992} a^{5} + \frac{19}{248} a^{4} + \frac{87}{248} a^{3} + \frac{57}{124} a^{2} - \frac{5}{31} a + \frac{8}{31}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{21}{496} a^{15} - \frac{17}{248} a^{14} + \frac{59}{992} a^{13} + \frac{139}{992} a^{12} - \frac{467}{992} a^{11} + \frac{161}{248} a^{10} - \frac{99}{992} a^{9} - \frac{291}{248} a^{8} + \frac{1203}{496} a^{7} - \frac{823}{496} a^{6} - \frac{689}{992} a^{5} + \frac{120}{31} a^{4} - \frac{1101}{248} a^{3} + \frac{183}{124} a^{2} + \frac{149}{62} a - \frac{82}{31} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 12052.1232369 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times C_4).D_4$ (as 16T121):
| A solvable group of order 64 |
| The 28 conjugacy class representatives for $(C_2\times C_4).D_4$ |
| Character table for $(C_2\times C_4).D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.2225.1, \(\Q(\zeta_{5})\), 4.0.11125.1, 8.0.440605625.1, 8.8.11015140625.1, 8.0.123765625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $89$ | 89.4.0.1 | $x^{4} - x + 27$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 89.4.0.1 | $x^{4} - x + 27$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 89.8.6.2 | $x^{8} + 979 x^{4} + 285156$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |