Properties

Label 16.0.120573447359765625.1
Degree $16$
Signature $[0, 8]$
Discriminant $3^{8}\cdot 5^{8}\cdot 19^{6}$
Root discriminant $11.68$
Ramified primes $3, 5, 19$
Class number $1$
Class group Trivial
Galois group $C_2\times D_8$ (as 16T29)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -2, 6, 2, 4, 5, 3, -1, 2, -2, 4, -5, 3, -2, 1, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - x^15 + x^14 - 2*x^13 + 3*x^12 - 5*x^11 + 4*x^10 - 2*x^9 + 2*x^8 - x^7 + 3*x^6 + 5*x^5 + 4*x^4 + 2*x^3 + 6*x^2 - 2*x + 1)
 
gp: K = bnfinit(x^16 - x^15 + x^14 - 2*x^13 + 3*x^12 - 5*x^11 + 4*x^10 - 2*x^9 + 2*x^8 - x^7 + 3*x^6 + 5*x^5 + 4*x^4 + 2*x^3 + 6*x^2 - 2*x + 1, 1)
 

Normalized defining polynomial

\( x^{16} - x^{15} + x^{14} - 2 x^{13} + 3 x^{12} - 5 x^{11} + 4 x^{10} - 2 x^{9} + 2 x^{8} - x^{7} + 3 x^{6} + 5 x^{5} + 4 x^{4} + 2 x^{3} + 6 x^{2} - 2 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(120573447359765625=3^{8}\cdot 5^{8}\cdot 19^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $11.68$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 5, 19$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{17} a^{13} + \frac{4}{17} a^{12} + \frac{2}{17} a^{11} + \frac{4}{17} a^{10} + \frac{1}{17} a^{9} + \frac{1}{17} a^{7} + \frac{7}{17} a^{6} + \frac{1}{17} a^{5} - \frac{6}{17} a^{4} - \frac{1}{17} a^{3} - \frac{1}{17} a^{2} - \frac{6}{17} a + \frac{4}{17}$, $\frac{1}{85} a^{14} - \frac{2}{85} a^{13} + \frac{29}{85} a^{12} - \frac{8}{85} a^{11} - \frac{8}{17} a^{10} - \frac{23}{85} a^{9} - \frac{33}{85} a^{8} + \frac{18}{85} a^{7} - \frac{24}{85} a^{6} - \frac{29}{85} a^{5} + \frac{18}{85} a^{4} - \frac{12}{85} a^{3} + \frac{2}{5} a^{2} + \frac{6}{85} a - \frac{41}{85}$, $\frac{1}{5015} a^{15} - \frac{24}{5015} a^{14} - \frac{37}{5015} a^{13} - \frac{1511}{5015} a^{12} - \frac{1529}{5015} a^{11} - \frac{2303}{5015} a^{10} + \frac{2233}{5015} a^{9} - \frac{1211}{5015} a^{8} + \frac{438}{1003} a^{7} + \frac{664}{5015} a^{6} - \frac{814}{5015} a^{5} + \frac{2207}{5015} a^{4} - \frac{1}{295} a^{3} + \frac{983}{5015} a^{2} + \frac{997}{5015} a - \frac{218}{5015}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( \frac{506}{1003} a^{15} - \frac{1602}{5015} a^{14} + \frac{849}{5015} a^{13} - \frac{3878}{5015} a^{12} + \frac{5806}{5015} a^{11} - \frac{1720}{1003} a^{10} + \frac{4016}{5015} a^{9} + \frac{276}{5015} a^{8} + \frac{2134}{5015} a^{7} - \frac{282}{5015} a^{6} + \frac{4518}{5015} a^{5} + \frac{15644}{5015} a^{4} + \frac{12804}{5015} a^{3} + \frac{6512}{5015} a^{2} + \frac{11193}{5015} a + \frac{1762}{5015} \) (order $6$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 179.27186754 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times D_8$ (as 16T29):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 32
The 14 conjugacy class representatives for $C_2\times D_8$
Character table for $C_2\times D_8$

Intermediate fields

\(\Q(\sqrt{5}) \), \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{-3}) \), 4.2.475.1, 4.2.4275.1, \(\Q(\sqrt{-3}, \sqrt{5})\), 8.2.4286875.1, 8.2.347236875.1, 8.0.18275625.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Galois closure: data not computed
Degree 16 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ R R ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ R ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
3Data not computed
$5$5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$19$19.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
19.2.1.1$x^{2} - 19$$2$$1$$1$$C_2$$[\ ]_{2}$
19.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
19.2.1.1$x^{2} - 19$$2$$1$$1$$C_2$$[\ ]_{2}$
19.4.2.1$x^{4} + 57 x^{2} + 1444$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
19.4.2.1$x^{4} + 57 x^{2} + 1444$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$