Normalized defining polynomial
\( x^{16} + 1040 x^{14} + 439400 x^{12} + 96668000 x^{10} + 11781412500 x^{8} + 779715300000 x^{6} + 25340747250000 x^{4} + 313742585000000 x^{2} + 979896528601250 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(120380606746796557474451161088000000000000=2^{79}\cdot 5^{12}\cdot 13^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $369.43$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4160=2^{6}\cdot 5\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4160}(1,·)$, $\chi_{4160}(3717,·)$, $\chi_{4160}(3849,·)$, $\chi_{4160}(2573,·)$, $\chi_{4160}(1041,·)$, $\chi_{4160}(597,·)$, $\chi_{4160}(729,·)$, $\chi_{4160}(3613,·)$, $\chi_{4160}(2081,·)$, $\chi_{4160}(1637,·)$, $\chi_{4160}(1769,·)$, $\chi_{4160}(493,·)$, $\chi_{4160}(3121,·)$, $\chi_{4160}(2677,·)$, $\chi_{4160}(2809,·)$, $\chi_{4160}(1533,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{13} a^{2}$, $\frac{1}{13} a^{3}$, $\frac{1}{845} a^{4}$, $\frac{1}{845} a^{5}$, $\frac{1}{10985} a^{6}$, $\frac{1}{10985} a^{7}$, $\frac{1}{12138425} a^{8} + \frac{8}{186745} a^{6} - \frac{2}{14365} a^{4} - \frac{5}{221} a^{2} - \frac{1}{17}$, $\frac{1}{376291175} a^{9} - \frac{29}{1157819} a^{7} + \frac{3}{89063} a^{5} - \frac{90}{6851} a^{3} + \frac{152}{527} a$, $\frac{1}{4891785275} a^{10} - \frac{12}{376291175} a^{8} - \frac{6}{445315} a^{6} + \frac{232}{445315} a^{4} - \frac{251}{6851} a^{2} - \frac{6}{17}$, $\frac{1}{4891785275} a^{11} - \frac{237}{5789095} a^{7} - \frac{23}{89063} a^{5} + \frac{250}{6851} a^{3} + \frac{57}{527} a$, $\frac{1}{317966042875} a^{12} + \frac{11}{376291175} a^{8} - \frac{147}{5789095} a^{6} - \frac{246}{445315} a^{4} + \frac{19}{527} a^{2} - \frac{8}{17}$, $\frac{1}{317966042875} a^{13} - \frac{133}{5789095} a^{7} + \frac{116}{445315} a^{5} + \frac{183}{6851} a^{3} + \frac{188}{527} a$, $\frac{1}{4133558557375} a^{14} - \frac{14}{376291175} a^{8} + \frac{54}{5789095} a^{6} + \frac{28}{89063} a^{4} + \frac{95}{6851} a^{2} - \frac{4}{17}$, $\frac{1}{4133558557375} a^{15} + \frac{132}{5789095} a^{7} - \frac{177}{445315} a^{5} - \frac{111}{6851} a^{3} - \frac{104}{527} a$
Class group and class number
$C_{2}\times C_{505217732}$, which has order $1010435464$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 320942.0117381313 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 16 |
| The 16 conjugacy class representatives for $C_{16}$ |
| Character table for $C_{16}$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\zeta_{16})^+\), 8.8.1342177280000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | $16$ | R | ${\href{/LocalNumberField/17.1.0.1}{1} }^{16}$ | $16$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{16}$ | $16$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | $16$ | $16$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 13 | Data not computed | ||||||