Normalized defining polynomial
\( x^{16} - 7 x^{15} + 25 x^{14} - 70 x^{13} + 139 x^{12} - 148 x^{11} - 29 x^{10} + 617 x^{9} - 1111 x^{8} + 1511 x^{7} + 286 x^{6} - 4041 x^{5} + 3937 x^{4} - 191 x^{3} - 1969 x^{2} + 478 x + 1381 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1200326067404665657109641=13^{12}\cdot 61^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $31.99$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{13} a^{12} + \frac{6}{13} a^{11} + \frac{4}{13} a^{10} - \frac{1}{13} a^{9} - \frac{2}{13} a^{7} - \frac{2}{13} a^{6} - \frac{1}{13} a^{5} - \frac{3}{13} a^{4} + \frac{4}{13} a^{3} + \frac{4}{13} a^{2} - \frac{1}{13} a + \frac{1}{13}$, $\frac{1}{793} a^{13} + \frac{3}{793} a^{12} + \frac{103}{793} a^{11} + \frac{12}{61} a^{10} - \frac{166}{793} a^{9} + \frac{24}{793} a^{8} - \frac{217}{793} a^{7} - \frac{47}{793} a^{6} + \frac{11}{61} a^{5} + \frac{17}{61} a^{4} - \frac{8}{793} a^{3} + \frac{14}{61} a^{2} - \frac{334}{793} a + \frac{101}{793}$, $\frac{1}{793} a^{14} - \frac{28}{793} a^{12} - \frac{92}{793} a^{11} - \frac{329}{793} a^{10} - \frac{149}{793} a^{9} - \frac{289}{793} a^{8} + \frac{55}{793} a^{7} - \frac{265}{793} a^{6} - \frac{86}{793} a^{5} - \frac{5}{13} a^{4} - \frac{282}{793} a^{3} + \frac{218}{793} a^{2} - \frac{361}{793} a + \frac{368}{793}$, $\frac{1}{2250067043275045278323} a^{15} + \frac{948956490694852667}{2250067043275045278323} a^{14} - \frac{258967424654428426}{2250067043275045278323} a^{13} + \frac{78497755769086081032}{2250067043275045278323} a^{12} - \frac{325068700338520066997}{2250067043275045278323} a^{11} + \frac{1049282971339568899744}{2250067043275045278323} a^{10} + \frac{62933770761076555020}{173082080251926559871} a^{9} - \frac{1047655448660692999363}{2250067043275045278323} a^{8} - \frac{726134600355839363324}{2250067043275045278323} a^{7} - \frac{811429721031293456101}{2250067043275045278323} a^{6} - \frac{747449131964085153637}{2250067043275045278323} a^{5} + \frac{1066840827547778122128}{2250067043275045278323} a^{4} + \frac{895081169857045118501}{2250067043275045278323} a^{3} - \frac{1114307696432538779936}{2250067043275045278323} a^{2} + \frac{302580266603390893914}{2250067043275045278323} a + \frac{463631853263634214817}{2250067043275045278323}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 113920.750816 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4\wr C_2$ (as 16T28):
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_4\wr C_2$ |
| Character table for $C_4\wr C_2$ |
Intermediate fields
| \(\Q(\sqrt{13}) \), 4.0.2197.1, 4.4.10309.1, 4.0.134017.1, 8.0.17960556289.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $61$ | $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 61.2.1.1 | $x^{2} - 61$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 61.2.1.1 | $x^{2} - 61$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 61.2.1.1 | $x^{2} - 61$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 61.2.1.1 | $x^{2} - 61$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 61.2.1.1 | $x^{2} - 61$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 61.2.1.1 | $x^{2} - 61$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |