Normalized defining polynomial
\( x^{16} - 2 x^{15} + x^{14} + 8 x^{13} - 40 x^{12} + 56 x^{11} - 24 x^{10} - 112 x^{9} + 383 x^{8} - 598 x^{7} + 723 x^{6} - 544 x^{5} + 384 x^{4} - 104 x^{3} + 92 x^{2} + 32 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(119842600295694598144=2^{34}\cdot 17^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $17.99$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{4} a^{6} - \frac{1}{4} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{16} a^{11} + \frac{1}{16} a^{10} + \frac{1}{16} a^{9} + \frac{1}{16} a^{8} + \frac{3}{16} a^{7} - \frac{1}{16} a^{6} - \frac{3}{16} a^{5} - \frac{3}{16} a^{4} + \frac{1}{8} a^{3} - \frac{1}{8} a^{2}$, $\frac{1}{48} a^{12} - \frac{1}{12} a^{10} + \frac{1}{12} a^{9} - \frac{1}{24} a^{8} - \frac{1}{6} a^{7} - \frac{1}{8} a^{6} - \frac{1}{12} a^{5} + \frac{17}{48} a^{4} - \frac{1}{2} a^{3} - \frac{7}{24} a^{2} + \frac{1}{6} a + \frac{1}{3}$, $\frac{1}{96} a^{13} - \frac{1}{96} a^{12} + \frac{1}{48} a^{11} + \frac{1}{48} a^{10} - \frac{1}{8} a^{9} - \frac{1}{8} a^{8} + \frac{1}{12} a^{7} + \frac{1}{12} a^{6} - \frac{11}{32} a^{5} + \frac{25}{96} a^{4} + \frac{5}{48} a^{3} + \frac{17}{48} a^{2} - \frac{1}{6} a - \frac{1}{6}$, $\frac{1}{96} a^{14} - \frac{1}{96} a^{12} - \frac{1}{48} a^{11} - \frac{1}{12} a^{10} + \frac{5}{48} a^{9} - \frac{1}{16} a^{8} + \frac{7}{48} a^{7} - \frac{7}{96} a^{6} - \frac{5}{16} a^{5} + \frac{19}{96} a^{4} - \frac{1}{6} a^{3} - \frac{19}{48} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{299263584} a^{15} + \frac{276121}{149631792} a^{14} + \frac{458825}{149631792} a^{13} - \frac{1882277}{299263584} a^{12} + \frac{106565}{9351987} a^{11} + \frac{4000889}{49877264} a^{10} + \frac{244015}{3117329} a^{9} + \frac{725697}{12469316} a^{8} + \frac{26764151}{299263584} a^{7} + \frac{92377}{149631792} a^{6} + \frac{8684187}{49877264} a^{5} - \frac{97895479}{299263584} a^{4} - \frac{24940433}{74815896} a^{3} - \frac{28382999}{149631792} a^{2} - \frac{1412115}{3117329} a - \frac{2963191}{18703974}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 76945.8851596 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2.D_4$ (as 16T33):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_2^2.D_4$ |
| Character table for $C_2^2.D_4$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\sqrt{34}) \), \(\Q(\sqrt{17}) \), 4.0.2312.1 x2, \(\Q(\sqrt{2}, \sqrt{17})\), 4.0.1088.2 x2, 8.0.1368408064.3 x2, 8.0.342102016.2, 8.4.10947264512.1 x2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.3.1 | $x^{2} + 14$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ |
| 2.2.3.1 | $x^{2} + 14$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.1 | $x^{2} + 14$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.1 | $x^{2} + 14$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.4.11.1 | $x^{4} + 12 x^{2} + 2$ | $4$ | $1$ | $11$ | $C_4$ | $[3, 4]$ | |
| 2.4.11.1 | $x^{4} + 12 x^{2} + 2$ | $4$ | $1$ | $11$ | $C_4$ | $[3, 4]$ | |
| $17$ | 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |