Normalized defining polynomial
\( x^{16} - 3 x^{15} - x^{14} + 12 x^{13} - 2 x^{12} + 12 x^{11} - 109 x^{10} + 111 x^{9} + 193 x^{8} - 408 x^{7} + 554 x^{6} - 384 x^{5} + 148 x^{4} - 336 x^{3} + 416 x^{2} - 384 x + 256 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(119574225000000000000=2^{12}\cdot 3^{14}\cdot 5^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $17.98$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{4}$, $\frac{1}{8} a^{11} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{8} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{32} a^{12} - \frac{1}{16} a^{8} + \frac{3}{16} a^{7} + \frac{3}{32} a^{6} + \frac{3}{16} a^{5} - \frac{1}{16} a^{4} - \frac{3}{8} a^{3} + \frac{3}{8} a^{2}$, $\frac{1}{352} a^{13} - \frac{1}{176} a^{12} - \frac{1}{11} a^{10} - \frac{1}{176} a^{9} + \frac{1}{176} a^{8} + \frac{47}{352} a^{7} + \frac{2}{11} a^{6} + \frac{29}{176} a^{5} + \frac{5}{22} a^{4} - \frac{43}{88} a^{3} - \frac{7}{44} a^{2} - \frac{1}{11} a - \frac{5}{11}$, $\frac{1}{20768} a^{14} + \frac{3}{2596} a^{13} + \frac{21}{2596} a^{12} - \frac{85}{5192} a^{11} - \frac{813}{10384} a^{10} + \frac{1075}{10384} a^{9} + \frac{209}{1888} a^{8} - \frac{2393}{10384} a^{7} + \frac{1543}{10384} a^{6} - \frac{217}{1298} a^{5} - \frac{2207}{5192} a^{4} + \frac{1073}{2596} a^{3} - \frac{173}{649} a^{2} - \frac{227}{1298} a - \frac{218}{649}$, $\frac{1}{14490373568} a^{15} - \frac{41759}{14490373568} a^{14} + \frac{15421501}{14490373568} a^{13} - \frac{43034557}{3622593392} a^{12} + \frac{347888303}{7245186784} a^{11} - \frac{177374951}{3622593392} a^{10} - \frac{994109873}{14490373568} a^{9} - \frac{1392344289}{14490373568} a^{8} - \frac{2044742845}{14490373568} a^{7} - \frac{352113891}{3622593392} a^{6} + \frac{80670455}{7245186784} a^{5} + \frac{654587443}{1811296696} a^{4} - \frac{56227947}{329326672} a^{3} - \frac{134801863}{905648348} a^{2} - \frac{10180359}{41165834} a - \frac{62542223}{226412087}$
Class group and class number
$C_{4}$, which has order $4$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{105009}{245599552} a^{15} + \frac{834805}{245599552} a^{14} - \frac{4017985}{245599552} a^{13} - \frac{522685}{122799776} a^{12} + \frac{10028735}{122799776} a^{11} + \frac{283311}{61399888} a^{10} - \frac{25359645}{245599552} a^{9} - \frac{138139165}{245599552} a^{8} + \frac{175616445}{245599552} a^{7} + \frac{199397515}{122799776} a^{6} - \frac{301069933}{122799776} a^{5} + \frac{17360895}{61399888} a^{4} - \frac{10334505}{61399888} a^{3} - \frac{15520255}{30699944} a^{2} - \frac{752345}{697726} a + \frac{9808110}{3837493} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5726.12322965 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_8:C_2^2$ (as 16T38):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_8:C_2^2$ |
| Character table for $C_8:C_2^2$ |
Intermediate fields
| \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-3}) \), 4.0.13500.2, 4.0.13500.1, \(\Q(\sqrt{-3}, \sqrt{5})\), 8.0.10935000000.2, 8.0.10935000000.1, 8.0.182250000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||