Normalized defining polynomial
\( x^{16} - 8 x^{15} + 38 x^{14} - 126 x^{13} + 292 x^{12} - 478 x^{11} + 542 x^{10} - 378 x^{9} + 76 x^{8} + 138 x^{7} - 124 x^{6} - 26 x^{5} + 145 x^{4} - 150 x^{3} + 86 x^{2} - 28 x + 4 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(11953891353600000000=2^{16}\cdot 3^{4}\cdot 5^{8}\cdot 7^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $15.57$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{5}$, $\frac{1}{16} a^{12} + \frac{1}{8} a^{11} + \frac{1}{16} a^{10} + \frac{1}{8} a^{9} + \frac{1}{8} a^{8} - \frac{3}{8} a^{7} - \frac{5}{16} a^{6} - \frac{1}{2} a^{5} + \frac{7}{16} a^{4} - \frac{1}{8} a^{3} + \frac{1}{8} a^{2} + \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{16} a^{13} - \frac{3}{16} a^{11} - \frac{1}{8} a^{9} - \frac{1}{8} a^{8} + \frac{7}{16} a^{7} + \frac{1}{8} a^{6} + \frac{7}{16} a^{5} + \frac{3}{8} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{368} a^{14} - \frac{7}{368} a^{13} + \frac{5}{184} a^{12} + \frac{31}{368} a^{11} + \frac{67}{368} a^{10} - \frac{25}{184} a^{9} - \frac{41}{368} a^{8} - \frac{13}{368} a^{7} - \frac{11}{46} a^{6} - \frac{137}{368} a^{5} - \frac{1}{16} a^{4} - \frac{29}{92} a^{3} + \frac{3}{184} a^{2} - \frac{1}{46} a + \frac{11}{92}$, $\frac{1}{21712} a^{15} + \frac{11}{10856} a^{14} - \frac{423}{21712} a^{13} + \frac{459}{21712} a^{12} + \frac{31}{236} a^{11} + \frac{1479}{21712} a^{10} + \frac{2373}{21712} a^{9} - \frac{1705}{10856} a^{8} + \frac{8873}{21712} a^{7} - \frac{6783}{21712} a^{6} - \frac{3631}{10856} a^{5} + \frac{6255}{21712} a^{4} + \frac{159}{472} a^{3} + \frac{957}{10856} a^{2} - \frac{875}{5428} a - \frac{2303}{5428}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{1774}{1357} a^{15} + \frac{13305}{1357} a^{14} - \frac{61025}{1357} a^{13} + \frac{194870}{1357} a^{12} - \frac{428656}{1357} a^{11} + \frac{1315963}{2714} a^{10} - \frac{1362355}{2714} a^{9} + \frac{394485}{1357} a^{8} + \frac{10882}{1357} a^{7} - \frac{228456}{1357} a^{6} + \frac{127755}{1357} a^{5} + \frac{177405}{2714} a^{4} - \frac{433221}{2714} a^{3} + \frac{178076}{1357} a^{2} - \frac{82760}{1357} a + \frac{17201}{1357} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3578.38600842 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$Q_8:C_2^2$ (as 16T23):
| A solvable group of order 32 |
| The 17 conjugacy class representatives for $Q_8 : C_2^2$ |
| Character table for $Q_8 : C_2^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| $3$ | 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| $5$ | 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $7$ | 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |