Normalized defining polynomial
\( x^{16} - 2 x^{15} + 113 x^{14} - 172 x^{13} + 5830 x^{12} - 6642 x^{11} + 175264 x^{10} - 161942 x^{9} + 3284104 x^{8} - 2727984 x^{7} + 38554411 x^{6} - 29815402 x^{5} + 273976211 x^{4} - 167301256 x^{3} + 1092003662 x^{2} - 247972336 x + 2265405829 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(11939508427262544380953600000000=2^{16}\cdot 5^{8}\cdot 29^{6}\cdot 941^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $87.56$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 29, 941$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{3906303824591788358806477930041317525338519146583405567501097} a^{15} + \frac{107736440876657145034083009884702985537638890394227349947323}{3906303824591788358806477930041317525338519146583405567501097} a^{14} + \frac{1278006674241222682699415534077867976465181355344744394147501}{3906303824591788358806477930041317525338519146583405567501097} a^{13} - \frac{1166247597152856967450149405981654216892703204912715151688087}{3906303824591788358806477930041317525338519146583405567501097} a^{12} + \frac{88336669406551166549711066102523405255437402156617443698027}{205594938136409913621393575265332501333606270872810819342163} a^{11} - \frac{802460102344511521619836615479248981310776694819709971717549}{3906303824591788358806477930041317525338519146583405567501097} a^{10} - \frac{1187208557522489256847956304870512534771466437405483489088524}{3906303824591788358806477930041317525338519146583405567501097} a^{9} - \frac{1374995907817744609755742448844225478440113035088101346465002}{3906303824591788358806477930041317525338519146583405567501097} a^{8} + \frac{1387400487210980515374433384313366303911319696481985078336575}{3906303824591788358806477930041317525338519146583405567501097} a^{7} + \frac{45731628797375433198298730143543180613330587376411979936483}{205594938136409913621393575265332501333606270872810819342163} a^{6} + \frac{389589635128548759688460842492159778980995408788028756372866}{3906303824591788358806477930041317525338519146583405567501097} a^{5} + \frac{228373880113297057775943467590457534992997167508072414639924}{3906303824591788358806477930041317525338519146583405567501097} a^{4} + \frac{26839117087963815261289668854076686033282040296840117112253}{3906303824591788358806477930041317525338519146583405567501097} a^{3} - \frac{1240572838957577532271111299793627827934057103337255220527899}{3906303824591788358806477930041317525338519146583405567501097} a^{2} - \frac{1731477165101393111952690778897341143872351546398818466607599}{3906303824591788358806477930041317525338519146583405567501097} a + \frac{1223469146584350414545814220966905793447519358649085550300800}{3906303824591788358806477930041317525338519146583405567501097}$
Class group and class number
$C_{4}\times C_{36920}$, which has order $147680$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4024.00673312 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 44 conjugacy class representatives for t16n1025 |
| Character table for t16n1025 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.725.1, 8.0.3455359377440000.2, 8.0.3672007840000.1, 8.8.494613125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $29$ | 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 29.8.6.2 | $x^{8} + 145 x^{4} + 7569$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 941 | Data not computed | ||||||