Normalized defining polynomial
\( x^{16} - 2 x^{15} + 113 x^{14} - 170 x^{13} + 5670 x^{12} - 5200 x^{11} + 162976 x^{10} - 45672 x^{9} + 2933108 x^{8} + 851928 x^{7} + 34322677 x^{6} + 21797522 x^{5} + 263102522 x^{4} + 148225950 x^{3} + 1229052881 x^{2} + 112463354 x + 2667232231 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(11939508427262544380953600000000=2^{16}\cdot 5^{8}\cdot 29^{6}\cdot 941^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $87.56$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 29, 941$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{19} a^{14} - \frac{2}{19} a^{12} - \frac{3}{19} a^{11} + \frac{4}{19} a^{10} - \frac{2}{19} a^{9} + \frac{5}{19} a^{8} - \frac{3}{19} a^{7} - \frac{9}{19} a^{6} - \frac{9}{19} a^{5} + \frac{4}{19} a^{4} - \frac{2}{19} a^{3} - \frac{5}{19} a^{2} + \frac{7}{19} a - \frac{5}{19}$, $\frac{1}{376315379149896161242685961991476646252007407880740882090099} a^{15} - \frac{9122802886349027696991833980824526116432708901373110971390}{376315379149896161242685961991476646252007407880740882090099} a^{14} + \frac{5894100822110192898608953143937499366060518614142728640263}{376315379149896161242685961991476646252007407880740882090099} a^{13} - \frac{6661862808779772070257886296795644453802906784513218734757}{16361538223908528749681998347455506358782930777423516612613} a^{12} - \frac{2942961702309430081775070539150814770042247990178541666679}{376315379149896161242685961991476646252007407880740882090099} a^{11} + \frac{93307369383014244696532463516141500656443326204329132123081}{376315379149896161242685961991476646252007407880740882090099} a^{10} - \frac{29374484431905118569090035313299866963442938717254070940706}{376315379149896161242685961991476646252007407880740882090099} a^{9} - \frac{107461433952944625997327378890169329078711892647706138651538}{376315379149896161242685961991476646252007407880740882090099} a^{8} + \frac{143444743642384829748891553608314765310022531710963021534941}{376315379149896161242685961991476646252007407880740882090099} a^{7} - \frac{4088330548501032173717647160839526050315670802649007673271}{19806072586836640065404524315340876118526705677933730636321} a^{6} - \frac{58734913983129255650088531274934606009803799067930404693106}{376315379149896161242685961991476646252007407880740882090099} a^{5} - \frac{1064857800133789080103636888379320350538631496320678939874}{9178423881704784420553316146133576737853839216603436148539} a^{4} - \frac{75161418279059461068368076275091910521396206728741175569865}{376315379149896161242685961991476646252007407880740882090099} a^{3} - \frac{77689571265913893024523245505832726029436772752902185943142}{376315379149896161242685961991476646252007407880740882090099} a^{2} + \frac{96187259181697673737870367435398357180483705345162153347668}{376315379149896161242685961991476646252007407880740882090099} a + \frac{89062701378412663299608902018161717764024908250723987596538}{376315379149896161242685961991476646252007407880740882090099}$
Class group and class number
$C_{4}\times C_{37960}$, which has order $151840$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4024.00673312 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 44 conjugacy class representatives for t16n1025 |
| Character table for t16n1025 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.725.1, 8.0.3455359377440000.1, 8.0.3672007840000.1, 8.8.494613125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $29$ | 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 29.8.6.2 | $x^{8} + 145 x^{4} + 7569$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 941 | Data not computed | ||||||