Normalized defining polynomial
\( x^{16} - 8 x^{15} + 156 x^{14} - 952 x^{13} + 10486 x^{12} - 50904 x^{11} + 404700 x^{10} - 1578616 x^{9} + 9888039 x^{8} - 30603224 x^{7} + 157206132 x^{6} - 370616376 x^{5} + 1590906842 x^{4} - 2596926520 x^{3} + 9376658828 x^{2} - 8135298584 x + 24635195998 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1192550062163720610398944075186176=2^{48}\cdot 3^{8}\cdot 71^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $116.76$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 71$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3408=2^{4}\cdot 3\cdot 71\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3408}(1,·)$, $\chi_{3408}(709,·)$, $\chi_{3408}(3265,·)$, $\chi_{3408}(2699,·)$, $\chi_{3408}(143,·)$, $\chi_{3408}(851,·)$, $\chi_{3408}(853,·)$, $\chi_{3408}(1561,·)$, $\chi_{3408}(3407,·)$, $\chi_{3408}(995,·)$, $\chi_{3408}(1703,·)$, $\chi_{3408}(1705,·)$, $\chi_{3408}(2413,·)$, $\chi_{3408}(1847,·)$, $\chi_{3408}(2555,·)$, $\chi_{3408}(2557,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{23} a^{12} - \frac{6}{23} a^{11} - \frac{11}{23} a^{10} - \frac{5}{23} a^{9} - \frac{5}{23} a^{8} + \frac{7}{23} a^{7} - \frac{8}{23} a^{6} + \frac{10}{23} a^{5} - \frac{8}{23} a^{4} - \frac{4}{23} a^{3} - \frac{1}{23} a^{2} + \frac{7}{23} a + \frac{11}{23}$, $\frac{1}{23} a^{13} - \frac{1}{23} a^{11} - \frac{2}{23} a^{10} + \frac{11}{23} a^{9} + \frac{11}{23} a^{7} + \frac{8}{23} a^{6} + \frac{6}{23} a^{5} - \frac{6}{23} a^{4} - \frac{2}{23} a^{3} + \frac{1}{23} a^{2} + \frac{7}{23} a - \frac{3}{23}$, $\frac{1}{1354666603518963985663} a^{14} - \frac{1}{193523800502709140809} a^{13} + \frac{5638572097489382977}{1354666603518963985663} a^{12} - \frac{33831432584936297771}{1354666603518963985663} a^{11} - \frac{353935051438242060022}{1354666603518963985663} a^{10} - \frac{629536484484801608482}{1354666603518963985663} a^{9} + \frac{363608788155148778183}{1354666603518963985663} a^{8} + \frac{85138770333564468186}{193523800502709140809} a^{7} + \frac{93521806629468208358}{193523800502709140809} a^{6} + \frac{316101068449894203230}{1354666603518963985663} a^{5} + \frac{186401459340663863168}{1354666603518963985663} a^{4} - \frac{260226821553724650211}{1354666603518963985663} a^{3} + \frac{314788918726483707654}{1354666603518963985663} a^{2} + \frac{195033548069759931135}{1354666603518963985663} a + \frac{77715295746667841333}{193523800502709140809}$, $\frac{1}{52223634376265074461427560319} a^{15} + \frac{838063}{2270592798968046715714241753} a^{14} + \frac{811565571981404817134362387}{52223634376265074461427560319} a^{13} - \frac{625304568755767520036901166}{52223634376265074461427560319} a^{12} - \frac{21164616648417764872136333586}{52223634376265074461427560319} a^{11} + \frac{16434898653042095549396179844}{52223634376265074461427560319} a^{10} + \frac{11938276266487453190352170005}{52223634376265074461427560319} a^{9} + \frac{25483041603626389380247304419}{52223634376265074461427560319} a^{8} + \frac{1648486574544585769656009966}{7460519196609296351632508617} a^{7} + \frac{5833471156265806105862328749}{52223634376265074461427560319} a^{6} - \frac{10933263653490693832961439480}{52223634376265074461427560319} a^{5} - \frac{409729044786603882013357514}{7460519196609296351632508617} a^{4} - \frac{17312386381879493507185853804}{52223634376265074461427560319} a^{3} - \frac{674006058154481655634161390}{52223634376265074461427560319} a^{2} - \frac{255471067832558449298749524}{52223634376265074461427560319} a + \frac{3603350745203153753473309782}{7460519196609296351632508617}$
Class group and class number
$C_{4}\times C_{8}\times C_{37128}$, which has order $1188096$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 11964.310642723332 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_4$ (as 16T2):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4\times C_2^2$ |
| Character table for $C_4\times C_2^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.24.9 | $x^{8} + 8 x^{7} + 14 x^{4} + 4 x^{2} + 8 x + 30$ | $8$ | $1$ | $24$ | $C_4\times C_2$ | $[2, 3, 4]$ |
| 2.8.24.9 | $x^{8} + 8 x^{7} + 14 x^{4} + 4 x^{2} + 8 x + 30$ | $8$ | $1$ | $24$ | $C_4\times C_2$ | $[2, 3, 4]$ | |
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $71$ | 71.4.2.1 | $x^{4} + 1491 x^{2} + 609961$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 71.4.2.1 | $x^{4} + 1491 x^{2} + 609961$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 71.4.2.1 | $x^{4} + 1491 x^{2} + 609961$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 71.4.2.1 | $x^{4} + 1491 x^{2} + 609961$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |