Normalized defining polynomial
\( x^{16} + 4x^{14} + 24x^{12} + 58x^{10} + 159x^{8} + 226x^{6} + 311x^{4} + 207x^{2} + 121 \)
Invariants
| Degree: | $16$ |
| |
| Signature: | $[0, 8]$ |
| |
| Discriminant: |
\(119251860062500000000\)
\(\medspace = 2^{8}\cdot 5^{12}\cdot 11^{4}\cdot 19^{4}\)
|
| |
| Root discriminant: | \(17.98\) |
| |
| Galois root discriminant: | $2^{3/2}5^{3/4}11^{1/2}19^{1/2}\approx 136.72427835574135$ | ||
| Ramified primes: |
\(2\), \(5\), \(11\), \(19\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | 8.0.682515625.4 | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3}a^{8}-\frac{1}{3}a^{6}+\frac{1}{3}a^{4}+\frac{1}{3}$, $\frac{1}{3}a^{9}-\frac{1}{3}a^{7}+\frac{1}{3}a^{5}+\frac{1}{3}a$, $\frac{1}{3}a^{10}+\frac{1}{3}a^{4}+\frac{1}{3}a^{2}+\frac{1}{3}$, $\frac{1}{3}a^{11}+\frac{1}{3}a^{5}+\frac{1}{3}a^{3}+\frac{1}{3}a$, $\frac{1}{6}a^{12}-\frac{1}{6}a^{11}-\frac{1}{2}a^{7}+\frac{1}{6}a^{6}+\frac{1}{3}a^{5}+\frac{1}{6}a^{4}-\frac{1}{6}a^{3}+\frac{1}{6}a^{2}-\frac{1}{6}a-\frac{1}{2}$, $\frac{1}{6}a^{13}-\frac{1}{6}a^{11}-\frac{1}{6}a^{8}-\frac{1}{3}a^{7}+\frac{1}{6}a^{6}-\frac{1}{2}a^{5}+\frac{1}{3}a^{4}+\frac{1}{3}a-\frac{1}{6}$, $\frac{1}{834}a^{14}-\frac{11}{139}a^{12}-\frac{1}{6}a^{11}-\frac{41}{417}a^{10}-\frac{1}{6}a^{9}-\frac{20}{417}a^{8}-\frac{1}{3}a^{7}+\frac{53}{139}a^{6}-\frac{1}{3}a^{5}+\frac{67}{834}a^{4}-\frac{1}{6}a^{3}+\frac{347}{834}a^{2}-\frac{1}{3}a+\frac{127}{278}$, $\frac{1}{9174}a^{15}-\frac{205}{9174}a^{13}-\frac{736}{4587}a^{11}-\frac{1}{6}a^{10}-\frac{192}{1529}a^{9}-\frac{1}{6}a^{8}-\frac{3713}{9174}a^{7}-\frac{1}{3}a^{6}+\frac{683}{1529}a^{5}-\frac{1}{3}a^{4}-\frac{753}{1529}a^{3}-\frac{1}{6}a^{2}+\frac{689}{1529}a-\frac{1}{3}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{2}$, which has order $2$ |
| |
| Narrow class group: | $C_{2}$, which has order $2$ |
|
Unit group
| Rank: | $7$ |
| |
| Torsion generator: |
\( \frac{4}{417} a^{14} + \frac{14}{417} a^{12} + \frac{89}{417} a^{10} + \frac{118}{417} a^{8} + \frac{146}{139} a^{6} - \frac{10}{417} a^{4} + \frac{415}{417} a^{2} - \frac{283}{417} \)
(order $10$)
|
| |
| Fundamental units: |
$\frac{4}{417}a^{14}+\frac{14}{417}a^{12}+\frac{89}{417}a^{10}+\frac{257}{417}a^{8}+\frac{716}{417}a^{6}+\frac{460}{139}a^{4}+\frac{1666}{417}a^{2}+\frac{508}{139}$, $\frac{93}{3058}a^{15}+\frac{2}{417}a^{14}+\frac{907}{9174}a^{13}+\frac{7}{417}a^{12}+\frac{2600}{4587}a^{11}+\frac{89}{834}a^{10}+\frac{1476}{1529}a^{9}+\frac{257}{834}a^{8}+\frac{22141}{9174}a^{7}+\frac{358}{417}a^{6}+\frac{5941}{4587}a^{5}+\frac{230}{139}a^{4}+\frac{5803}{4587}a^{3}+\frac{2083}{834}a^{2}-\frac{8914}{4587}a+\frac{254}{139}$, $\frac{301}{9174}a^{15}+\frac{17}{834}a^{14}+\frac{164}{1529}a^{13}-\frac{5}{417}a^{12}+\frac{3227}{4587}a^{11}+\frac{45}{278}a^{10}+\frac{12563}{9174}a^{9}-\frac{67}{139}a^{8}+\frac{11751}{3058}a^{7}-\frac{5}{278}a^{6}+\frac{12097}{3058}a^{5}-\frac{2197}{834}a^{4}+\frac{42175}{9174}a^{3}-\frac{317}{417}a^{2}+\frac{5980}{4587}a-\frac{1279}{417}$, $\frac{245}{9174}a^{15}-\frac{25}{417}a^{14}+\frac{116}{4587}a^{13}-\frac{175}{834}a^{12}+\frac{1631}{4587}a^{11}-\frac{1043}{834}a^{10}-\frac{452}{4587}a^{9}-\frac{1085}{417}a^{8}+\frac{1031}{1529}a^{7}-\frac{2807}{417}a^{6}-\frac{25007}{9174}a^{5}-\frac{6547}{834}a^{4}-\frac{22849}{9174}a^{3}-\frac{1131}{139}a^{2}-\frac{43709}{9174}a-\frac{1880}{417}$, $\frac{8}{417}a^{15}+\frac{7}{834}a^{14}+\frac{28}{417}a^{13}-\frac{15}{278}a^{12}+\frac{178}{417}a^{11}-\frac{3}{139}a^{10}+\frac{889}{834}a^{9}-\frac{418}{417}a^{8}+\frac{723}{278}a^{7}-\frac{971}{834}a^{6}+\frac{1648}{417}a^{5}-\frac{2059}{417}a^{4}+\frac{1247}{417}a^{3}-\frac{545}{139}a^{2}+\frac{953}{834}a-\frac{598}{139}$, $\frac{245}{9174}a^{15}+\frac{25}{417}a^{14}+\frac{116}{4587}a^{13}+\frac{175}{834}a^{12}+\frac{1631}{4587}a^{11}+\frac{1043}{834}a^{10}-\frac{452}{4587}a^{9}+\frac{1085}{417}a^{8}+\frac{1031}{1529}a^{7}+\frac{2807}{417}a^{6}-\frac{25007}{9174}a^{5}+\frac{6547}{834}a^{4}-\frac{22849}{9174}a^{3}+\frac{1131}{139}a^{2}-\frac{43709}{9174}a+\frac{1880}{417}$, $\frac{23}{1529}a^{15}+\frac{43}{834}a^{14}+\frac{761}{9174}a^{13}+\frac{27}{278}a^{12}+\frac{1093}{3058}a^{11}+\frac{322}{417}a^{10}+\frac{3581}{3058}a^{9}+\frac{643}{834}a^{8}+\frac{21227}{9174}a^{7}+\frac{1277}{417}a^{6}+\frac{44135}{9174}a^{5}+\frac{179}{139}a^{4}+\frac{21580}{4587}a^{3}+\frac{1414}{417}a^{2}+\frac{14329}{3058}a-\frac{19}{834}$
|
| |
| Regulator: | \( 7775.62649708 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 7775.62649708 \cdot 2}{10\cdot\sqrt{119251860062500000000}}\cr\approx \mathstrut & 0.345916878017 \end{aligned}\]
Galois group
$(C_2^2\times D_4^2):C_4$ (as 16T1086):
| A solvable group of order 1024 |
| The 97 conjugacy class representatives for $(C_2^2\times D_4^2):C_4$ |
| Character table for $(C_2^2\times D_4^2):C_4$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 4.0.5225.1, 4.4.26125.1, 8.0.682515625.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Minimal sibling: | 16.0.698896000000000000.1 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.4.0.1}{4} }^{4}$ | R | ${\href{/padicField/7.8.0.1}{8} }^{2}$ | R | ${\href{/padicField/13.8.0.1}{8} }^{2}$ | ${\href{/padicField/17.4.0.1}{4} }^{4}$ | R | ${\href{/padicField/23.4.0.1}{4} }^{4}$ | ${\href{/padicField/29.4.0.1}{4} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }^{4}$ | ${\href{/padicField/31.4.0.1}{4} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }^{2}{,}\,{\href{/padicField/31.1.0.1}{1} }^{4}$ | ${\href{/padicField/37.8.0.1}{8} }^{2}$ | ${\href{/padicField/41.2.0.1}{2} }^{4}{,}\,{\href{/padicField/41.1.0.1}{1} }^{8}$ | ${\href{/padicField/43.8.0.1}{8} }^{2}$ | ${\href{/padicField/47.4.0.1}{4} }^{4}$ | ${\href{/padicField/53.8.0.1}{8} }^{2}$ | ${\href{/padicField/59.4.0.1}{4} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.4.2.8a3.2 | $x^{8} + 2 x^{6} + 4 x^{5} + 2 x^{4} + 2 x^{3} + 5 x^{2} + 8 x + 3$ | $2$ | $4$ | $8$ | $C_8:C_2$ | $$[2, 2]^{4}$$ |
| 2.8.1.0a1.1 | $x^{8} + x^{4} + x^{3} + x^{2} + 1$ | $1$ | $8$ | $0$ | $C_8$ | $$[\ ]^{8}$$ | |
|
\(5\)
| 5.4.4.12a1.4 | $x^{16} + 16 x^{14} + 16 x^{13} + 104 x^{12} + 192 x^{11} + 448 x^{10} + 864 x^{9} + 1432 x^{8} + 2048 x^{7} + 2624 x^{6} + 2752 x^{5} + 2208 x^{4} + 1280 x^{3} + 512 x^{2} + 128 x + 21$ | $4$ | $4$ | $12$ | $C_4^2$ | $$[\ ]_{4}^{4}$$ |
|
\(11\)
| $\Q_{11}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{11}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{11}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{11}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| 11.2.1.0a1.1 | $x^{2} + 7 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 11.2.1.0a1.1 | $x^{2} + 7 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 11.1.2.1a1.1 | $x^{2} + 11$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 11.1.2.1a1.1 | $x^{2} + 11$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 11.2.2.2a1.2 | $x^{4} + 14 x^{3} + 53 x^{2} + 28 x + 15$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
|
\(19\)
| 19.2.1.0a1.1 | $x^{2} + 18 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
| 19.2.1.0a1.1 | $x^{2} + 18 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 19.2.1.0a1.1 | $x^{2} + 18 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 19.2.1.0a1.1 | $x^{2} + 18 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 19.4.2.4a1.2 | $x^{8} + 4 x^{6} + 22 x^{5} + 8 x^{4} + 44 x^{3} + 129 x^{2} + 44 x + 23$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ |