Normalized defining polynomial
\( x^{16} - 2 x^{15} - 33 x^{14} + 275 x^{13} + 1385 x^{12} - 5763 x^{11} - 36633 x^{10} + 2216 x^{9} + 409334 x^{8} + 872766 x^{7} - 1426424 x^{6} - 7059308 x^{5} - 3351926 x^{4} + 7815964 x^{3} + 9240200 x^{2} + 54292082 x + 85351591 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(11888044252790185643475966652687313=31^{15}\cdot 47^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $134.80$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $31, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} + \frac{1}{5} a^{11} + \frac{2}{5} a^{10} + \frac{1}{5} a^{9} - \frac{2}{5} a^{8} + \frac{2}{5} a^{7} - \frac{2}{5} a^{6} + \frac{1}{5} a^{5} - \frac{2}{5} a^{4} + \frac{2}{5} a^{3} - \frac{2}{5} a - \frac{2}{5}$, $\frac{1}{4465} a^{13} - \frac{52}{4465} a^{12} - \frac{1696}{4465} a^{11} + \frac{231}{893} a^{10} - \frac{303}{893} a^{9} + \frac{117}{235} a^{8} + \frac{952}{4465} a^{7} - \frac{563}{4465} a^{6} + \frac{227}{893} a^{5} - \frac{102}{4465} a^{4} + \frac{804}{4465} a^{3} + \frac{233}{4465} a^{2} + \frac{864}{4465} a - \frac{106}{235}$, $\frac{1}{4465} a^{14} + \frac{13}{893} a^{12} - \frac{2202}{4465} a^{11} + \frac{100}{893} a^{10} - \frac{652}{4465} a^{9} + \frac{458}{4465} a^{8} - \frac{174}{4465} a^{7} - \frac{1351}{4465} a^{6} + \frac{873}{4465} a^{5} - \frac{7}{893} a^{4} + \frac{1856}{4465} a^{3} - \frac{83}{893} a^{2} - \frac{1736}{4465} a - \frac{107}{235}$, $\frac{1}{590869187482586784419471956480141908874175} a^{15} + \frac{9454830420893407707143349894189943398}{118173837496517356883894391296028381774835} a^{14} - \frac{12745795867396369199919338501682198313}{590869187482586784419471956480141908874175} a^{13} + \frac{7144830713489940361448004459562540038024}{590869187482586784419471956480141908874175} a^{12} + \frac{143045500877948771848646695580441832324883}{590869187482586784419471956480141908874175} a^{11} + \frac{172363153432771047013003855314028134056478}{590869187482586784419471956480141908874175} a^{10} + \frac{85336998977815176976642194726126503369178}{590869187482586784419471956480141908874175} a^{9} + \frac{166101825842369266438173085595446740644717}{590869187482586784419471956480141908874175} a^{8} + \frac{151656211490981340117274040632247811823943}{590869187482586784419471956480141908874175} a^{7} - \frac{172766618115926430821463734745499701821138}{590869187482586784419471956480141908874175} a^{6} + \frac{9412672455917364134107402433268964745069}{118173837496517356883894391296028381774835} a^{5} + \frac{129444316778757196317729983554999671173657}{590869187482586784419471956480141908874175} a^{4} - \frac{33763031168551821849610490142601849954032}{590869187482586784419471956480141908874175} a^{3} - \frac{236722897048866225228396789639593803537}{1818059038407959336675298327631205873459} a^{2} - \frac{11563078368038778211107551262373955872883}{118173837496517356883894391296028381774835} a - \frac{732395073977029252996202024088292681}{1709923477679507295319305450915320975}$
Class group and class number
$C_{3}\times C_{3}$, which has order $9$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5904415332.32 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $D_{16}$ |
| Character table for $D_{16}$ |
Intermediate fields
| \(\Q(\sqrt{-31}) \), 4.0.1400177.1, 8.0.2856442134846353.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | $16$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | R | $16$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | R | $16$ | ${\href{/LocalNumberField/59.1.0.1}{1} }^{16}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 31 | Data not computed | ||||||
| $47$ | $\Q_{47}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{47}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 47.2.1.2 | $x^{2} + 94$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 47.2.1.2 | $x^{2} + 94$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 47.2.1.2 | $x^{2} + 94$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 47.2.1.2 | $x^{2} + 94$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 47.2.1.2 | $x^{2} + 94$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 47.2.1.2 | $x^{2} + 94$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 47.2.1.2 | $x^{2} + 94$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |