Normalized defining polynomial
\( x^{16} - 4 x^{15} + 6 x^{14} - 24 x^{13} + 159 x^{12} - 704 x^{11} + 2729 x^{10} - 9468 x^{9} + 25319 x^{8} - 48408 x^{7} + 63469 x^{6} - 58860 x^{5} + 48622 x^{4} - 33452 x^{3} + 23275 x^{2} - 9660 x + 5836 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(118460853639390732666015625=5^{12}\cdot 13^{8}\cdot 29^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $42.62$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 13, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{7} - \frac{1}{2} a^{3} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{9} - \frac{1}{8} a^{8} - \frac{1}{8} a^{7} - \frac{1}{4} a^{6} + \frac{3}{8} a^{3} - \frac{3}{8} a^{2} - \frac{3}{8} a + \frac{1}{4}$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{7} - \frac{1}{4} a^{6} - \frac{1}{8} a^{4} - \frac{1}{2} a^{3} + \frac{1}{8} a - \frac{1}{4}$, $\frac{1}{16} a^{11} - \frac{1}{16} a^{9} + \frac{1}{16} a^{7} + \frac{1}{8} a^{6} - \frac{1}{16} a^{5} - \frac{1}{4} a^{4} + \frac{1}{16} a^{3} + \frac{1}{4} a^{2} + \frac{7}{16} a + \frac{1}{8}$, $\frac{1}{320} a^{12} + \frac{1}{80} a^{11} + \frac{9}{320} a^{10} - \frac{1}{20} a^{9} - \frac{3}{320} a^{8} + \frac{1}{16} a^{7} + \frac{7}{64} a^{6} - \frac{1}{40} a^{5} - \frac{17}{320} a^{4} - \frac{33}{80} a^{3} - \frac{17}{64} a^{2} + \frac{19}{40} a + \frac{29}{80}$, $\frac{1}{320} a^{13} - \frac{7}{320} a^{11} - \frac{3}{80} a^{10} - \frac{19}{320} a^{9} + \frac{1}{10} a^{8} - \frac{1}{64} a^{7} - \frac{17}{80} a^{6} + \frac{3}{64} a^{5} + \frac{7}{40} a^{4} + \frac{43}{320} a^{3} - \frac{37}{80} a^{2} - \frac{13}{80} a - \frac{1}{5}$, $\frac{1}{37120} a^{14} + \frac{9}{37120} a^{13} - \frac{7}{9280} a^{12} - \frac{819}{37120} a^{11} + \frac{1}{9280} a^{10} - \frac{2263}{37120} a^{9} - \frac{307}{18560} a^{8} - \frac{2393}{37120} a^{7} + \frac{1257}{9280} a^{6} + \frac{2459}{37120} a^{5} + \frac{343}{4640} a^{4} - \frac{8449}{37120} a^{3} + \frac{8161}{37120} a^{2} + \frac{1167}{4640} a + \frac{1437}{9280}$, $\frac{1}{1307389428137626359040} a^{15} - \frac{2853591266604631}{653694714068813179520} a^{14} - \frac{238437393794744723}{1307389428137626359040} a^{13} - \frac{2020831171932912831}{1307389428137626359040} a^{12} - \frac{2029744724031969715}{261477885627525271808} a^{11} + \frac{10633161722785374585}{261477885627525271808} a^{10} + \frac{38259720188009399763}{1307389428137626359040} a^{9} - \frac{65862531833790959231}{1307389428137626359040} a^{8} + \frac{40951823730573710971}{1307389428137626359040} a^{7} - \frac{1130915177680693991}{18413935607572202240} a^{6} + \frac{16436787026083533639}{261477885627525271808} a^{5} - \frac{37962575962386474169}{1307389428137626359040} a^{4} + \frac{40258853544892135937}{81711839258601647440} a^{3} - \frac{95086368172421990767}{1307389428137626359040} a^{2} + \frac{162027639107941376831}{326847357034406589760} a + \frac{52272239769375005469}{326847357034406589760}$
Class group and class number
$C_{2}\times C_{28}$, which has order $56$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 336977.682359 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2:D_4$ (as 16T34):
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_2^2:D_4$ |
| Character table for $C_2^2:D_4$ |
Intermediate fields
| \(\Q(\sqrt{13}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{65}) \), 4.0.3625.1, 4.0.612625.1, 4.0.122525.1, \(\Q(\sqrt{5}, \sqrt{13})\), 4.0.122525.2, 8.0.15012375625.1, 8.0.375309390625.1, 8.8.375309390625.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $13$ | 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $29$ | $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 29.2.1.1 | $x^{2} - 29$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.1.1 | $x^{2} - 29$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.1.1 | $x^{2} - 29$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.1.1 | $x^{2} - 29$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.1.1 | $x^{2} - 29$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.1.1 | $x^{2} - 29$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |