Normalized defining polynomial
\( x^{16} - 8 x^{15} + 44 x^{14} - 168 x^{13} + 630 x^{12} - 1960 x^{11} + 5980 x^{10} - 14984 x^{9} + 38313 x^{8} - 79760 x^{7} + 174976 x^{6} - 292528 x^{5} + 551472 x^{4} - 686544 x^{3} + 1108840 x^{2} - 804304 x + 1110334 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(11819246862071129702400000000=2^{62}\cdot 3^{8}\cdot 5^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $56.82$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(480=2^{5}\cdot 3\cdot 5\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{480}(1,·)$, $\chi_{480}(389,·)$, $\chi_{480}(449,·)$, $\chi_{480}(329,·)$, $\chi_{480}(269,·)$, $\chi_{480}(209,·)$, $\chi_{480}(149,·)$, $\chi_{480}(89,·)$, $\chi_{480}(29,·)$, $\chi_{480}(421,·)$, $\chi_{480}(361,·)$, $\chi_{480}(301,·)$, $\chi_{480}(241,·)$, $\chi_{480}(181,·)$, $\chi_{480}(121,·)$, $\chi_{480}(61,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{1738215262991873} a^{14} - \frac{7}{1738215262991873} a^{13} - \frac{408104127315725}{1738215262991873} a^{12} + \frac{710409500902568}{1738215262991873} a^{11} - \frac{86752640465438}{1738215262991873} a^{10} + \frac{584834618855663}{1738215262991873} a^{9} + \frac{50960884146017}{1738215262991873} a^{8} + \frac{625222734226742}{1738215262991873} a^{7} - \frac{197490428479329}{1738215262991873} a^{6} - \frac{174967869422069}{1738215262991873} a^{5} + \frac{693447156218578}{1738215262991873} a^{4} - \frac{525297094536014}{1738215262991873} a^{3} - \frac{472580850245020}{1738215262991873} a^{2} - \frac{799681883885967}{1738215262991873} a - \frac{274740500306140}{1738215262991873}$, $\frac{1}{428464847681707718881} a^{15} + \frac{123241}{428464847681707718881} a^{14} + \frac{1014709609459075371}{428464847681707718881} a^{13} - \frac{56893833996961730267}{428464847681707718881} a^{12} - \frac{66927418083803477449}{428464847681707718881} a^{11} + \frac{161709899831857492798}{428464847681707718881} a^{10} + \frac{184345857256463000892}{428464847681707718881} a^{9} - \frac{79782800044554077891}{428464847681707718881} a^{8} - \frac{97800248538381437621}{428464847681707718881} a^{7} + \frac{20359468406009243407}{428464847681707718881} a^{6} + \frac{582854142404512359}{428464847681707718881} a^{5} - \frac{39321023917653797340}{428464847681707718881} a^{4} + \frac{116303260043956625696}{428464847681707718881} a^{3} + \frac{94870461773545997897}{428464847681707718881} a^{2} - \frac{46769343804835110921}{428464847681707718881} a + \frac{84525147950119343564}{428464847681707718881}$
Class group and class number
$C_{7}\times C_{560}$, which has order $3920$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15753.94986242651 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_8$ (as 16T5):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_8\times C_2$ |
| Character table for $C_8\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-30}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{2}, \sqrt{-15})\), \(\Q(\zeta_{16})^+\), 4.0.460800.2, 8.0.212336640000.4, 8.0.108716359680000.13, \(\Q(\zeta_{32})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.31.6 | $x^{8} + 16 x^{7} + 28 x^{4} + 16 x^{3} + 2$ | $8$ | $1$ | $31$ | $C_8$ | $[3, 4, 5]$ |
| 2.8.31.6 | $x^{8} + 16 x^{7} + 28 x^{4} + 16 x^{3} + 2$ | $8$ | $1$ | $31$ | $C_8$ | $[3, 4, 5]$ | |
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||