Normalized defining polynomial
\( x^{16} - 16 x^{14} - 24 x^{13} + 88 x^{12} + 240 x^{11} - 8 x^{10} - 576 x^{9} - 420 x^{8} + 384 x^{7} + 608 x^{6} + 240 x^{5} + 112 x^{4} + 96 x^{3} + 16 x^{2} + 4 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(118192468620711297024=2^{54}\cdot 3^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $17.97$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{8} a^{8} - \frac{1}{2} a^{6} - \frac{1}{4}$, $\frac{1}{8} a^{9} - \frac{1}{2} a^{7} - \frac{1}{4} a$, $\frac{1}{8} a^{10} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{11} - \frac{1}{4} a^{3}$, $\frac{1}{8} a^{12} - \frac{1}{4} a^{4}$, $\frac{1}{8} a^{13} - \frac{1}{4} a^{5}$, $\frac{1}{40} a^{14} - \frac{1}{40} a^{13} + \frac{1}{40} a^{12} - \frac{1}{40} a^{11} - \frac{1}{40} a^{9} - \frac{1}{20} a^{8} - \frac{1}{2} a^{7} - \frac{1}{20} a^{6} - \frac{7}{20} a^{5} - \frac{1}{4} a^{4} - \frac{7}{20} a^{3} + \frac{2}{5} a^{2} - \frac{7}{20} a - \frac{1}{10}$, $\frac{1}{1623218000} a^{15} + \frac{279932}{101451125} a^{14} - \frac{44925761}{811609000} a^{13} + \frac{4634682}{101451125} a^{12} - \frac{2769209}{811609000} a^{11} - \frac{4335311}{101451125} a^{10} + \frac{4086663}{162321800} a^{9} - \frac{10027377}{202902250} a^{8} + \frac{362078619}{811609000} a^{7} + \frac{3125368}{20290225} a^{6} - \frac{67013153}{405804500} a^{5} - \frac{5296369}{101451125} a^{4} - \frac{138213959}{405804500} a^{3} + \frac{28086354}{101451125} a^{2} - \frac{72546479}{405804500} a - \frac{2245712}{101451125}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{964}{7825} a^{15} + \frac{7011}{62600} a^{14} + \frac{29821}{15650} a^{13} + \frac{18909}{15650} a^{12} - \frac{195841}{15650} a^{11} - \frac{588069}{31300} a^{10} + \frac{134821}{6260} a^{9} + \frac{1826541}{31300} a^{8} - \frac{38807}{7825} a^{7} - \frac{383439}{6260} a^{6} - \frac{192797}{7825} a^{5} + \frac{65631}{7825} a^{4} - \frac{72811}{7825} a^{3} - \frac{8547}{15650} a^{2} + \frac{59043}{15650} a - \frac{13779}{15650} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8127.25924519 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2:D_4$ (as 16T34):
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_2^2:D_4$ |
| Character table for $C_2^2:D_4$ |
Intermediate fields
| \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-6}) \), \(\Q(\sqrt{6}) \), 4.0.512.1, 4.0.4608.1, 4.2.18432.2, 4.2.18432.1, \(\Q(i, \sqrt{6})\), 8.0.1358954496.8, 8.0.339738624.7, 8.0.1358954496.5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |