Normalized defining polynomial
\( x^{16} - 8 x^{15} + 32 x^{14} - 72 x^{13} + 64 x^{12} + 128 x^{11} - 408 x^{10} + 208 x^{9} + 1428 x^{8} - 2768 x^{7} + 1824 x^{6} - 208 x^{5} - 224 x^{4} + 80 x^{2} - 32 x + 4 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(118192468620711297024=2^{54}\cdot 3^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $17.97$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{8} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} + \frac{1}{4}$, $\frac{1}{8} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} + \frac{1}{4} a$, $\frac{1}{8} a^{10} - \frac{1}{2} a^{6} + \frac{1}{4} a^{2}$, $\frac{1}{8} a^{11} - \frac{1}{2} a^{7} + \frac{1}{4} a^{3}$, $\frac{1}{8} a^{12} + \frac{1}{4} a^{4}$, $\frac{1}{8} a^{13} + \frac{1}{4} a^{5}$, $\frac{1}{24} a^{14} - \frac{1}{24} a^{13} + \frac{1}{24} a^{11} - \frac{1}{24} a^{10} + \frac{1}{24} a^{8} - \frac{1}{6} a^{7} + \frac{5}{12} a^{6} + \frac{1}{4} a^{5} - \frac{1}{6} a^{4} + \frac{5}{12} a^{3} + \frac{1}{4} a^{2} + \frac{1}{3} a + \frac{5}{12}$, $\frac{1}{415542604848} a^{15} + \frac{13775901}{2473467886} a^{14} + \frac{3199629841}{207771302424} a^{13} - \frac{2751110599}{207771302424} a^{12} - \frac{4328277691}{69257100808} a^{11} - \frac{1276788199}{25971412803} a^{10} + \frac{2957112119}{51942825606} a^{9} + \frac{926019027}{34628550404} a^{8} - \frac{13018476689}{69257100808} a^{7} - \frac{12198344264}{25971412803} a^{6} + \frac{3147142667}{103885651212} a^{5} + \frac{12499594399}{34628550404} a^{4} - \frac{6491920679}{103885651212} a^{3} - \frac{10352166718}{25971412803} a^{2} - \frac{420360841}{1236733943} a - \frac{21731552917}{51942825606}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{474429997345}{207771302424} a^{15} + \frac{478708001267}{29681614632} a^{14} - \frac{11917866494749}{207771302424} a^{13} + \frac{22106195384981}{207771302424} a^{12} - \frac{1617011758051}{51942825606} a^{11} - \frac{72796251554419}{207771302424} a^{10} + \frac{63732112724125}{103885651212} a^{9} + \frac{4959809361175}{25971412803} a^{8} - \frac{337487037648325}{103885651212} a^{7} + \frac{336371253890171}{103885651212} a^{6} - \frac{28786292600761}{103885651212} a^{5} - \frac{71657332936363}{103885651212} a^{4} - \frac{31818856669}{25971412803} a^{3} + \frac{17554248642617}{103885651212} a^{2} - \frac{242388207935}{7420403658} a - \frac{76640565745}{25971412803} \) (order $8$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9102.34357072 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2:C_4$ (as 16T10):
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_2^2 : C_4$ |
| Character table for $C_2^2 : C_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |