Normalized defining polynomial
\( x^{16} - 8 x^{15} + 28 x^{14} - 40 x^{13} - 44 x^{12} + 320 x^{11} - 680 x^{10} + 624 x^{9} + 686 x^{8} - 3912 x^{7} + 8352 x^{6} - 11312 x^{5} + 10284 x^{4} - 6176 x^{3} + 2328 x^{2} - 496 x + 46 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(118192468620711297024=2^{54}\cdot 3^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $17.97$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{97} a^{14} - \frac{44}{97} a^{13} - \frac{34}{97} a^{12} - \frac{15}{97} a^{11} + \frac{6}{97} a^{10} - \frac{38}{97} a^{9} + \frac{27}{97} a^{8} + \frac{23}{97} a^{7} + \frac{36}{97} a^{6} + \frac{2}{97} a^{5} + \frac{46}{97} a^{4} + \frac{36}{97} a^{3} + \frac{8}{97} a^{2} + \frac{46}{97} a + \frac{17}{97}$, $\frac{1}{38097207204359} a^{15} + \frac{47981941174}{38097207204359} a^{14} - \frac{10040909177412}{38097207204359} a^{13} + \frac{1297940936330}{38097207204359} a^{12} + \frac{17160323073826}{38097207204359} a^{11} + \frac{13436676364507}{38097207204359} a^{10} - \frac{2958268494045}{38097207204359} a^{9} + \frac{15376032458693}{38097207204359} a^{8} - \frac{10546791129125}{38097207204359} a^{7} - \frac{9716787033755}{38097207204359} a^{6} - \frac{17884002999267}{38097207204359} a^{5} - \frac{4091063897315}{38097207204359} a^{4} - \frac{3862929481830}{38097207204359} a^{3} - \frac{18886935996764}{38097207204359} a^{2} + \frac{2041789493790}{38097207204359} a + \frac{327787421993}{1656400313233}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1908.14511711 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4\times D_4$ (as 16T19):
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_4 \times D_4$ |
| Character table for $C_4 \times D_4$ |
Intermediate fields
| \(\Q(\sqrt{3}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{6}) \), 4.0.18432.2, 4.0.2048.2, \(\Q(\sqrt{2}, \sqrt{3})\), 4.2.4608.2, 4.2.4608.1, 8.4.339738624.1, 8.4.1358954496.1, 8.0.1358954496.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |