Normalized defining polynomial
\( x^{16} - 8 x^{15} + 20 x^{14} - 8 x^{13} - 40 x^{12} + 72 x^{11} + 28 x^{10} - 256 x^{9} + 976 x^{8} - 1856 x^{7} + 2340 x^{6} - 2160 x^{5} + 1408 x^{4} - 656 x^{3} + 196 x^{2} - 24 x + 1 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(118192468620711297024=2^{54}\cdot 3^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $17.97$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{17} a^{10} - \frac{5}{17} a^{9} + \frac{3}{17} a^{8} + \frac{3}{17} a^{6} + \frac{2}{17} a^{5} - \frac{8}{17} a^{4} - \frac{4}{17} a^{2} + \frac{3}{17} a + \frac{5}{17}$, $\frac{1}{17} a^{11} - \frac{5}{17} a^{9} - \frac{2}{17} a^{8} + \frac{3}{17} a^{7} + \frac{2}{17} a^{5} - \frac{6}{17} a^{4} - \frac{4}{17} a^{3} + \frac{3}{17} a + \frac{8}{17}$, $\frac{1}{17} a^{12} + \frac{7}{17} a^{9} + \frac{1}{17} a^{8} + \frac{4}{17} a^{5} + \frac{7}{17} a^{4} + \frac{6}{17} a + \frac{8}{17}$, $\frac{1}{17} a^{13} + \frac{2}{17} a^{9} - \frac{4}{17} a^{8} - \frac{7}{17} a^{5} + \frac{5}{17} a^{4} + \frac{4}{17} a - \frac{1}{17}$, $\frac{1}{17} a^{14} + \frac{6}{17} a^{9} - \frac{6}{17} a^{8} + \frac{4}{17} a^{6} + \frac{1}{17} a^{5} - \frac{1}{17} a^{4} - \frac{5}{17} a^{2} - \frac{7}{17} a + \frac{7}{17}$, $\frac{1}{10011279010049} a^{15} - \frac{3371877141}{141003929719} a^{14} - \frac{207092760433}{10011279010049} a^{13} + \frac{124376895470}{10011279010049} a^{12} - \frac{134610912952}{10011279010049} a^{11} - \frac{58858877701}{10011279010049} a^{10} - \frac{614020599052}{10011279010049} a^{9} + \frac{2829793352393}{10011279010049} a^{8} - \frac{4093723127197}{10011279010049} a^{7} - \frac{2799286717824}{10011279010049} a^{6} + \frac{2782587376367}{10011279010049} a^{5} - \frac{4125599995519}{10011279010049} a^{4} + \frac{1192420874382}{10011279010049} a^{3} + \frac{22148215012}{588898765297} a^{2} + \frac{2097496330420}{10011279010049} a + \frac{2613321612496}{10011279010049}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{396205164960}{588898765297} a^{15} - \frac{44785681030}{8294348807} a^{14} + \frac{7955046201333}{588898765297} a^{13} - \frac{3005709842981}{588898765297} a^{12} - \frac{971296358495}{34641103841} a^{11} + \frac{28776720723641}{588898765297} a^{10} + \frac{12375493681770}{588898765297} a^{9} - \frac{103980997575196}{588898765297} a^{8} + \frac{386048833990633}{588898765297} a^{7} - \frac{734204497790813}{588898765297} a^{6} + \frac{904802596773420}{588898765297} a^{5} - \frac{816526140721754}{588898765297} a^{4} + \frac{510992666350410}{588898765297} a^{3} - \frac{223452171937029}{588898765297} a^{2} + \frac{59796572921437}{588898765297} a - \frac{3936223889923}{588898765297} \) (order $16$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 23614.5375719 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2:C_4$ (as 16T10):
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_2^2 : C_4$ |
| Character table for $C_2^2 : C_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |