Properties

Label 16.0.11748739546...3136.1
Degree $16$
Signature $[0, 8]$
Discriminant $2^{28}\cdot 17^{8}\cdot 89^{4}$
Root discriminant $42.60$
Ramified primes $2, 17, 89$
Class number $4$ (GRH)
Class group $[2, 2]$ (GRH)
Galois group $C_2.C_2\wr C_2^2$ (as 16T394)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![479432, -952096, 868536, -649576, 410186, -160148, 39802, -3184, -8707, 5380, -1416, 380, -8, -48, 14, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 4*x^15 + 14*x^14 - 48*x^13 - 8*x^12 + 380*x^11 - 1416*x^10 + 5380*x^9 - 8707*x^8 - 3184*x^7 + 39802*x^6 - 160148*x^5 + 410186*x^4 - 649576*x^3 + 868536*x^2 - 952096*x + 479432)
 
gp: K = bnfinit(x^16 - 4*x^15 + 14*x^14 - 48*x^13 - 8*x^12 + 380*x^11 - 1416*x^10 + 5380*x^9 - 8707*x^8 - 3184*x^7 + 39802*x^6 - 160148*x^5 + 410186*x^4 - 649576*x^3 + 868536*x^2 - 952096*x + 479432, 1)
 

Normalized defining polynomial

\( x^{16} - 4 x^{15} + 14 x^{14} - 48 x^{13} - 8 x^{12} + 380 x^{11} - 1416 x^{10} + 5380 x^{9} - 8707 x^{8} - 3184 x^{7} + 39802 x^{6} - 160148 x^{5} + 410186 x^{4} - 649576 x^{3} + 868536 x^{2} - 952096 x + 479432 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(117487395465924089674203136=2^{28}\cdot 17^{8}\cdot 89^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $42.60$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 17, 89$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{10} - \frac{1}{4} a^{8} - \frac{1}{8} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2}$, $\frac{1}{8} a^{11} - \frac{1}{4} a^{8} + \frac{1}{8} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{12} - \frac{1}{8} a^{8} - \frac{1}{4} a^{6} + \frac{1}{4} a^{4}$, $\frac{1}{32} a^{13} + \frac{1}{32} a^{12} + \frac{3}{32} a^{9} + \frac{7}{32} a^{8} + \frac{3}{16} a^{7} - \frac{1}{16} a^{6} - \frac{5}{16} a^{5} - \frac{3}{16} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{512} a^{14} - \frac{3}{256} a^{13} - \frac{7}{512} a^{12} - \frac{7}{128} a^{11} + \frac{23}{512} a^{10} + \frac{21}{256} a^{9} + \frac{45}{512} a^{8} - \frac{1}{4} a^{7} + \frac{3}{32} a^{6} + \frac{15}{32} a^{5} + \frac{53}{256} a^{4} - \frac{27}{64} a^{3} + \frac{5}{32} a^{2} + \frac{5}{32} a - \frac{7}{64}$, $\frac{1}{172896659622074665195823470592} a^{15} + \frac{62773347523273574027589363}{172896659622074665195823470592} a^{14} + \frac{1196137204461048540651236387}{172896659622074665195823470592} a^{13} + \frac{6403806717151296512395141333}{172896659622074665195823470592} a^{12} - \frac{3338581948175761420044009445}{172896659622074665195823470592} a^{11} + \frac{4896042591603343410336141577}{172896659622074665195823470592} a^{10} - \frac{12021714141137666456460846713}{172896659622074665195823470592} a^{9} - \frac{10684755141537531020442033275}{172896659622074665195823470592} a^{8} + \frac{45687017928459163534949789}{568739011914719293407314048} a^{7} + \frac{21045512927554375537826389}{5403020613189833287369483456} a^{6} - \frac{2254883895327542646710847745}{4549912095317754347258512384} a^{5} - \frac{1583599155442644849845371423}{86448329811037332597911735296} a^{4} - \frac{6862578892842951811149119657}{21612082452759333149477933824} a^{3} - \frac{474918747693378253948529911}{5403020613189833287369483456} a^{2} - \frac{1747643403161808456981720813}{21612082452759333149477933824} a - \frac{10657131619024391878143051215}{21612082452759333149477933824}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 24206966.6399 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2.C_2\wr C_2^2$ (as 16T394):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 128
The 17 conjugacy class representatives for $C_2.C_2\wr C_2^2$
Character table for $C_2.C_2\wr C_2^2$

Intermediate fields

\(\Q(\sqrt{34}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{2}) \), 4.0.1088.2 x2, \(\Q(\sqrt{2}, \sqrt{17})\), 4.0.2312.1 x2, 8.0.342102016.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ R ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.2.3.1$x^{2} + 14$$2$$1$$3$$C_2$$[3]$
2.2.3.1$x^{2} + 14$$2$$1$$3$$C_2$$[3]$
2.2.3.1$x^{2} + 14$$2$$1$$3$$C_2$$[3]$
2.2.3.1$x^{2} + 14$$2$$1$$3$$C_2$$[3]$
2.4.8.3$x^{4} + 6 x^{2} + 4 x + 14$$4$$1$$8$$C_2^2$$[2, 3]$
2.4.8.3$x^{4} + 6 x^{2} + 4 x + 14$$4$$1$$8$$C_2^2$$[2, 3]$
$17$17.4.2.1$x^{4} + 85 x^{2} + 2601$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
17.4.2.1$x^{4} + 85 x^{2} + 2601$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
17.4.2.1$x^{4} + 85 x^{2} + 2601$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
17.4.2.1$x^{4} + 85 x^{2} + 2601$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
89Data not computed