Normalized defining polynomial
\( x^{16} + 884 x^{14} + 288626 x^{12} + 44336136 x^{10} + 3323256560 x^{8} + 113320451504 x^{6} + 1370532909096 x^{4} + 3771231912032 x^{2} + 2900178534032 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1173204871331335989075336895013770710512304128=2^{44}\cdot 13^{12}\cdot 17^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $655.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 13, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3536=2^{4}\cdot 13\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3536}(1,·)$, $\chi_{3536}(1451,·)$, $\chi_{3536}(1665,·)$, $\chi_{3536}(1481,·)$, $\chi_{3536}(1041,·)$, $\chi_{3536}(2579,·)$, $\chi_{3536}(25,·)$, $\chi_{3536}(915,·)$, $\chi_{3536}(2995,·)$, $\chi_{3536}(827,·)$, $\chi_{3536}(2729,·)$, $\chi_{3536}(619,·)$, $\chi_{3536}(625,·)$, $\chi_{3536}(1331,·)$, $\chi_{3536}(1273,·)$, $\chi_{3536}(1659,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{26} a^{4}$, $\frac{1}{26} a^{5}$, $\frac{1}{26} a^{6}$, $\frac{1}{26} a^{7}$, $\frac{1}{676} a^{8}$, $\frac{1}{676} a^{9}$, $\frac{1}{8788} a^{10} - \frac{3}{169} a^{6} - \frac{3}{13} a^{2}$, $\frac{1}{8788} a^{11} - \frac{3}{169} a^{7} - \frac{3}{13} a^{3}$, $\frac{1}{70304} a^{12} - \frac{1}{52} a^{6} + \frac{1}{4}$, $\frac{1}{3304288} a^{13} - \frac{1}{103259} a^{11} + \frac{3}{31772} a^{9} + \frac{373}{31772} a^{7} + \frac{1}{611} a^{5} - \frac{66}{611} a^{3} - \frac{59}{188} a$, $\frac{1}{23124844883412370472052827608928} a^{14} + \frac{3683314321900718365186591}{1778834221800951574773294431456} a^{12} + \frac{6646043831936545145246177}{222354277725118946846661803932} a^{10} - \frac{3152987177061367171599231}{8552087604812267186410069382} a^{8} + \frac{87187119058305417583838901}{17104175209624534372820138764} a^{6} + \frac{6034214869482354989911947}{328926446338933353323464207} a^{4} + \frac{317097657310376683391524961}{1315705785355733413293856828} a^{2} + \frac{997508600856513647014921}{2153364624150136519302548}$, $\frac{1}{300622983484360816136686758916064} a^{15} + \frac{2606632009825650105535317}{23124844883412370472052827608928} a^{13} - \frac{90255364254819598223368483}{2890605610426546309006603451116} a^{11} - \frac{80674113646466281866490959}{111177138862559473423330901966} a^{9} + \frac{4189346728064315486855192841}{222354277725118946846661803932} a^{7} + \frac{381348658262098979250821}{328926446338933353323464207} a^{5} + \frac{500133650363138287532241541}{17104175209624534372820138764} a^{3} - \frac{30433348155584377946690179}{101208137335056416407219756} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{4}\times C_{4}\times C_{4881092}$, which has order $1249559552$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 12339810.435594495 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 16 |
| The 16 conjugacy class representatives for $C_{16}$ |
| Character table for $C_{16}$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, 8.8.48003820910809088.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16$ | $16$ | $16$ | $16$ | R | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.22.30 | $x^{8} + 2 x^{4} + 16 x^{3} + 16 x + 52$ | $4$ | $2$ | $22$ | $C_8$ | $[3, 4]^{2}$ |
| 2.8.22.30 | $x^{8} + 2 x^{4} + 16 x^{3} + 16 x + 52$ | $4$ | $2$ | $22$ | $C_8$ | $[3, 4]^{2}$ | |
| $13$ | 13.4.3.1 | $x^{4} - 13$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 13.4.3.1 | $x^{4} - 13$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.3.1 | $x^{4} - 13$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.3.1 | $x^{4} - 13$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 17 | Data not computed | ||||||