Properties

Label 16.0.11716593810...0000.1
Degree $16$
Signature $[0, 8]$
Discriminant $2^{16}\cdot 3^{8}\cdot 5^{8}\cdot 17^{8}$
Root discriminant $31.94$
Ramified primes $2, 3, 5, 17$
Class number $24$ (GRH)
Class group $[2, 12]$ (GRH)
Galois group $C_2^4$ (as 16T3)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![364816, 0, 429916, 0, 270713, 0, 89784, 0, 21368, 0, 3498, 0, 392, 0, 28, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 + 28*x^14 + 392*x^12 + 3498*x^10 + 21368*x^8 + 89784*x^6 + 270713*x^4 + 429916*x^2 + 364816)
 
gp: K = bnfinit(x^16 + 28*x^14 + 392*x^12 + 3498*x^10 + 21368*x^8 + 89784*x^6 + 270713*x^4 + 429916*x^2 + 364816, 1)
 

Normalized defining polynomial

\( x^{16} + 28 x^{14} + 392 x^{12} + 3498 x^{10} + 21368 x^{8} + 89784 x^{6} + 270713 x^{4} + 429916 x^{2} + 364816 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(1171659381002265600000000=2^{16}\cdot 3^{8}\cdot 5^{8}\cdot 17^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $31.94$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5, 17$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(1020=2^{2}\cdot 3\cdot 5\cdot 17\)
Dirichlet character group:    $\lbrace$$\chi_{1020}(1,·)$, $\chi_{1020}(781,·)$, $\chi_{1020}(271,·)$, $\chi_{1020}(851,·)$, $\chi_{1020}(341,·)$, $\chi_{1020}(919,·)$, $\chi_{1020}(409,·)$, $\chi_{1020}(611,·)$, $\chi_{1020}(101,·)$, $\chi_{1020}(679,·)$, $\chi_{1020}(169,·)$, $\chi_{1020}(749,·)$, $\chi_{1020}(239,·)$, $\chi_{1020}(1019,·)$, $\chi_{1020}(509,·)$, $\chi_{1020}(511,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} + \frac{1}{4} a^{2}$, $\frac{1}{8} a^{9} - \frac{3}{8} a^{3}$, $\frac{1}{8} a^{10} - \frac{3}{8} a^{4}$, $\frac{1}{8} a^{11} - \frac{3}{8} a^{5}$, $\frac{1}{24} a^{12} - \frac{1}{24} a^{10} - \frac{11}{24} a^{6} + \frac{1}{8} a^{4} + \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{24} a^{13} - \frac{1}{24} a^{11} + \frac{1}{24} a^{7} + \frac{1}{8} a^{5} + \frac{1}{3} a^{3} + \frac{1}{6} a$, $\frac{1}{3991545649222824} a^{14} + \frac{53597482954721}{3991545649222824} a^{12} + \frac{23498099367609}{665257608203804} a^{10} - \frac{107928934165433}{3991545649222824} a^{8} + \frac{42610751386169}{190073602343944} a^{6} + \frac{905832883744447}{1995772824611412} a^{4} + \frac{6637868142901}{25919127592356} a^{2} - \frac{26662287607124}{166314402050951}$, $\frac{1}{602723393032646424} a^{15} + \frac{53597482954721}{602723393032646424} a^{13} - \frac{4300676353957117}{100453898838774404} a^{11} + \frac{25837117785782923}{602723393032646424} a^{9} + \frac{1753273172481665}{28701113953935544} a^{7} + \frac{55789585560558277}{301361696516323212} a^{5} - \frac{1587388478786993}{3913788266445756} a^{3} - \frac{1024548699912830}{25113474709693601} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{12}$, which has order $24$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -\frac{44313676931}{4531754834831928} a^{15} - \frac{391829787207}{1510584944943976} a^{13} - \frac{3853072845403}{1132938708707982} a^{11} - \frac{15696314103655}{566469354353991} a^{9} - \frac{677842836954125}{4531754834831928} a^{7} - \frac{585125404438291}{1132938708707982} a^{5} - \frac{164563131123853}{137325904085816} a^{3} - \frac{667268528605511}{1132938708707982} a \) (order $12$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 197754.791017 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^4$ (as 16T3):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 16
The 16 conjugacy class representatives for $C_2^4$
Character table for $C_2^4$

Intermediate fields

\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-255}) \), \(\Q(\sqrt{255}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-85}) \), \(\Q(\sqrt{85}) \), \(\Q(\sqrt{15}) \), \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{-17}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-5}) \), \(\Q(\sqrt{-51}) \), \(\Q(\sqrt{51}) \), \(\Q(i, \sqrt{255})\), \(\Q(\zeta_{12})\), \(\Q(i, \sqrt{85})\), \(\Q(\sqrt{3}, \sqrt{-85})\), \(\Q(\sqrt{-3}, \sqrt{85})\), \(\Q(\sqrt{3}, \sqrt{85})\), \(\Q(\sqrt{-3}, \sqrt{-85})\), \(\Q(i, \sqrt{15})\), \(\Q(i, \sqrt{17})\), \(\Q(i, \sqrt{5})\), \(\Q(i, \sqrt{51})\), \(\Q(\sqrt{15}, \sqrt{-17})\), \(\Q(\sqrt{-15}, \sqrt{17})\), \(\Q(\sqrt{5}, \sqrt{-51})\), \(\Q(\sqrt{-5}, \sqrt{51})\), \(\Q(\sqrt{15}, \sqrt{17})\), \(\Q(\sqrt{-15}, \sqrt{-17})\), \(\Q(\sqrt{5}, \sqrt{51})\), \(\Q(\sqrt{-5}, \sqrt{-51})\), \(\Q(\sqrt{3}, \sqrt{5})\), \(\Q(\sqrt{3}, \sqrt{-5})\), \(\Q(\sqrt{3}, \sqrt{-17})\), \(\Q(\sqrt{3}, \sqrt{17})\), \(\Q(\sqrt{-3}, \sqrt{-5})\), \(\Q(\sqrt{-3}, \sqrt{5})\), \(\Q(\sqrt{-3}, \sqrt{-17})\), \(\Q(\sqrt{-3}, \sqrt{17})\), \(\Q(\sqrt{15}, \sqrt{-51})\), \(\Q(\sqrt{-15}, \sqrt{51})\), \(\Q(\sqrt{5}, \sqrt{-17})\), \(\Q(\sqrt{-5}, \sqrt{17})\), \(\Q(\sqrt{15}, \sqrt{51})\), \(\Q(\sqrt{-15}, \sqrt{-51})\), \(\Q(\sqrt{-5}, \sqrt{-17})\), \(\Q(\sqrt{5}, \sqrt{17})\), 8.0.1082432160000.10, 8.0.1082432160000.1, 8.0.1082432160000.8, 8.0.12960000.1, 8.0.1731891456.1, 8.0.1082432160000.7, 8.0.13363360000.1, 8.0.1082432160000.5, 8.0.1082432160000.4, 8.0.1082432160000.2, 8.0.4228250625.1, 8.8.1082432160000.1, 8.0.1082432160000.6, 8.0.1082432160000.3, 8.0.1082432160000.9

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ R ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.4.4.1$x^{4} + 8 x^{2} + 4$$2$$2$$4$$C_2^2$$[2]^{2}$
2.4.4.1$x^{4} + 8 x^{2} + 4$$2$$2$$4$$C_2^2$$[2]^{2}$
2.4.4.1$x^{4} + 8 x^{2} + 4$$2$$2$$4$$C_2^2$$[2]^{2}$
2.4.4.1$x^{4} + 8 x^{2} + 4$$2$$2$$4$$C_2^2$$[2]^{2}$
$3$3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$5$5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$17$17.4.2.1$x^{4} + 85 x^{2} + 2601$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
17.4.2.1$x^{4} + 85 x^{2} + 2601$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
17.4.2.1$x^{4} + 85 x^{2} + 2601$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
17.4.2.1$x^{4} + 85 x^{2} + 2601$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$