Normalized defining polynomial
\( x^{16} - 3 x^{15} + 35 x^{14} - 111 x^{13} + 1722 x^{12} + 8963 x^{11} + 112504 x^{10} + 557525 x^{9} + 2911429 x^{8} + 10065610 x^{7} + 29242029 x^{6} + 61121472 x^{5} + 94081513 x^{4} + 77034741 x^{3} - 48509444 x^{2} - 224991882 x + 118910117 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1171598758708107367475386427203165009=13^{14}\cdot 29^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $179.60$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{5} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{6} - \frac{1}{2} a$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{2} a^{9} + \frac{1}{4} a^{7} + \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} + \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{10} - \frac{1}{2} a^{9} + \frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{11} + \frac{1}{4} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{41695119692009647924318489010044368529892848148269361072356} a^{15} - \frac{72606000277527889761679914491489620051525632159205295437}{41695119692009647924318489010044368529892848148269361072356} a^{14} + \frac{231434660315403428875682460269384283995294452692907066785}{10423779923002411981079622252511092132473212037067340268089} a^{13} + \frac{1793324012355179948749617604805096905955567997721500237349}{20847559846004823962159244505022184264946424074134680536178} a^{12} + \frac{3035939694710554228898068987560851232407114213588016030335}{20847559846004823962159244505022184264946424074134680536178} a^{11} + \frac{2123946019538842817116455550114735306035472892724148522537}{10423779923002411981079622252511092132473212037067340268089} a^{10} - \frac{18806710175743900812212443946276349847773725847030041143861}{41695119692009647924318489010044368529892848148269361072356} a^{9} + \frac{3847333678031725680701685704592391983398054678632143408807}{10423779923002411981079622252511092132473212037067340268089} a^{8} - \frac{2508424970836218381827517384866052099038999413238509599347}{10423779923002411981079622252511092132473212037067340268089} a^{7} - \frac{4298794708292682819882212590640930398243041343859673588531}{20847559846004823962159244505022184264946424074134680536178} a^{6} + \frac{3728895897277572318046994804436971449075967244763758115026}{10423779923002411981079622252511092132473212037067340268089} a^{5} - \frac{12279141646154017057240875923108054632116381703186521291111}{41695119692009647924318489010044368529892848148269361072356} a^{4} - \frac{2051584298680294824349005956981226026917551573172042705168}{10423779923002411981079622252511092132473212037067340268089} a^{3} + \frac{10050080193996824810835040740862997839175691735789869845717}{20847559846004823962159244505022184264946424074134680536178} a^{2} + \frac{7050737257133287967387195201484376080502539419628633052147}{20847559846004823962159244505022184264946424074134680536178} a - \frac{4338723040043219953416811311653454389106448774319080527373}{41695119692009647924318489010044368529892848148269361072356}$
Class group and class number
$C_{2}\times C_{54}\times C_{108}$, which has order $11664$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 16477435.4552 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$OD_{16}.C_2$ (as 16T40):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $OD_{16}.C_2$ |
| Character table for $OD_{16}.C_2$ |
Intermediate fields
| \(\Q(\sqrt{377}) \), \(\Q(\sqrt{13}) \), \(\Q(\sqrt{29}) \), 4.4.53582633.2, 4.4.53582633.1, \(\Q(\sqrt{13}, \sqrt{29})\), 8.8.2871098559212689.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.8.7.1 | $x^{8} - 13$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 13.8.7.1 | $x^{8} - 13$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| $29$ | 29.8.7.2 | $x^{8} - 116$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 29.8.7.2 | $x^{8} - 116$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |