Normalized defining polynomial
\( x^{16} - 6 x^{15} + 16 x^{14} - 30 x^{13} + 60 x^{12} - 122 x^{11} + 204 x^{10} - 304 x^{9} + 466 x^{8} - 660 x^{7} + 742 x^{6} - 680 x^{5} + 607 x^{4} - 540 x^{3} + 372 x^{2} - 154 x + 29 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(117033789351264256=2^{24}\cdot 17^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $11.66$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{5} a^{14} - \frac{2}{5} a^{9} + \frac{2}{5} a^{8} - \frac{1}{5} a^{6} - \frac{1}{5} a^{5} + \frac{2}{5} a^{4} - \frac{2}{5} a^{3} - \frac{2}{5} a^{2} - \frac{1}{5}$, $\frac{1}{5702036005} a^{15} - \frac{463914881}{5702036005} a^{14} - \frac{3454853}{17021003} a^{13} + \frac{339005991}{1140407201} a^{12} - \frac{467262901}{1140407201} a^{11} + \frac{2144558698}{5702036005} a^{10} - \frac{1247359286}{5702036005} a^{9} - \frac{15449377}{5702036005} a^{8} + \frac{2256376174}{5702036005} a^{7} + \frac{387149486}{1140407201} a^{6} + \frac{838728038}{5702036005} a^{5} + \frac{670013796}{5702036005} a^{4} + \frac{179604538}{1140407201} a^{3} + \frac{1602417557}{5702036005} a^{2} - \frac{2107954041}{5702036005} a + \frac{772609146}{5702036005}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{1547985}{21517117} a^{15} + \frac{13600593}{21517117} a^{14} - \frac{590784}{321151} a^{13} + \frac{68225806}{21517117} a^{12} - \frac{131746677}{21517117} a^{11} + \frac{289598174}{21517117} a^{10} - \frac{479266799}{21517117} a^{9} + \frac{677542269}{21517117} a^{8} - \frac{1061982065}{21517117} a^{7} + \frac{1553991255}{21517117} a^{6} - \frac{1671467541}{21517117} a^{5} + \frac{1415330212}{21517117} a^{4} - \frac{1271713629}{21517117} a^{3} + \frac{1178187212}{21517117} a^{2} - \frac{724276338}{21517117} a + \frac{202158199}{21517117} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 114.462998418 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2.SD_{16}$ (as 16T163):
| A solvable group of order 64 |
| The 19 conjugacy class representatives for $C_2^2.SD_{16}$ |
| Character table for $C_2^2.SD_{16}$ |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 4.0.272.1, 8.0.1257728.1, 8.0.20123648.2, 8.0.342102016.6 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $17$ | 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.8.6.1 | $x^{8} - 119 x^{4} + 23409$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |