Normalized defining polynomial
\( x^{16} - 8 x^{15} + 32 x^{14} - 82 x^{13} + 153 x^{12} - 226 x^{11} + 274 x^{10} - 254 x^{9} + 144 x^{8} - 16 x^{7} - 36 x^{6} + 26 x^{5} - 7 x^{4} + 2 x^{3} + 2 x^{2} - 2 x + 1 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(117033789351264256=2^{24}\cdot 17^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $11.66$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{4} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} + \frac{1}{4}$, $\frac{1}{4} a^{13} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{4} a^{14} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{11527832} a^{15} - \frac{554127}{11527832} a^{14} - \frac{152049}{11527832} a^{13} - \frac{802381}{11527832} a^{12} + \frac{243521}{5763916} a^{11} + \frac{1153161}{2881958} a^{10} - \frac{1384661}{5763916} a^{9} - \frac{32549}{75841} a^{8} + \frac{215781}{2881958} a^{7} + \frac{1203519}{2881958} a^{6} + \frac{491152}{1440979} a^{5} + \frac{1312623}{5763916} a^{4} + \frac{4195715}{11527832} a^{3} + \frac{1993761}{11527832} a^{2} - \frac{2425963}{11527832} a - \frac{2707715}{11527832}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{2535055}{5763916} a^{15} - \frac{18453625}{5763916} a^{14} + \frac{66943965}{5763916} a^{13} - \frac{152517245}{5763916} a^{12} + \frac{124593585}{2881958} a^{11} - \frac{79761101}{1440979} a^{10} + \frac{162740755}{2881958} a^{9} - \frac{2682465}{75841} a^{8} - \frac{7745025}{1440979} a^{7} + \frac{42369257}{1440979} a^{6} - \frac{25987235}{1440979} a^{5} + \frac{5153305}{2881958} a^{4} + \frac{12357465}{5763916} a^{3} + \frac{8074111}{5763916} a^{2} + \frac{4641135}{5763916} a - \frac{2114295}{5763916} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 170.642238459 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 7 conjugacy class representatives for $D_{8}$ |
| Character table for $D_{8}$ |
Intermediate fields
| \(\Q(\sqrt{-17}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{-1}) \), \(\Q(i, \sqrt{17})\), 4.2.1156.1 x2, 4.0.272.1 x2, 8.0.21381376.2, 8.2.85525504.1 x4, 8.0.20123648.2 x4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.12.14 | $x^{8} + 12 x^{4} + 144$ | $4$ | $2$ | $12$ | $D_4$ | $[2, 2]^{2}$ |
| 2.8.12.14 | $x^{8} + 12 x^{4} + 144$ | $4$ | $2$ | $12$ | $D_4$ | $[2, 2]^{2}$ | |
| $17$ | 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |